综述与专论

化学气相沉积法制备二维材料研究进展

展开
  • 1.昆明理工大学化学工程学院,昆明650500;
    2.云南省高校磷化工重点实验室,昆明650500;
    3.昆明黑磷科技服务有限责任公司,昆明650500
蒋运才(1995-),男,硕士研究生,主要从事纳米黑磷的制备及应用研究,E-mail:2422759918@qq.com。

收稿日期: 2020-07-21

  修回日期: 2021-09-03

  网络出版日期: 2021-12-13

基金资助

国家自然科学基金(21968012);云南省自然科学基金(2019FB012);云南省大学生创新训练项目(S201910674073)

Research progress on 2D material prepared by chemical vapor deposition

Expand
  • 1. Faculty of Chemical Engineering,Kunming University of Science and Technology, Kunming 650500;
    2. The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province,Kunming 650500;
    3. Kunming Black Phosphorus Technology Service Co.,Ltd.,Kunming 650500

Received date: 2020-07-21

  Revised date: 2021-09-03

  Online published: 2021-12-13

摘要

二维材料因性能优异而被广泛研究,但高质量二维材料的制备存在难度。化学气相沉积法制备的二维材料有着超高的结晶度,被认为是制备高质量二维材料最有潜力的一种方法。但是,化学气相沉积法制备的二维材料也存在诸多问题。基于此,对化学气相沉积法制备二维材料的研究进展进行综述,重点围绕衬底、生长温度、载气流速、系统压力等影响因素进行探讨,为化学气相沉积法制备更高质量的二维材料奠定基础,也为化学气相沉积法制备其他新型二维材料提供借鉴。

本文引用格式

蒋运才, 曹昌蝶, 刘岚君, 李光能, 廉培超 . 化学气相沉积法制备二维材料研究进展[J]. 化工新型材料, 2021 , 49(11) : 59 -62 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.11.013

Abstract

Two-dimensional(2D) materials are widely studied because of their excellent performances,but the preparation of high-quality 2D materials is difficult.2D materials prepared by chemical vapor deposition(CVD) have ultra-high crystallinity,and considered to be the most promising method for preparing high-quality 2D materials.However,the 2D materials prepared by CVD also have many problems.Based on this,the research progress on the preparation of 2D materials by CVD method was reviewed,focusing on the influencing factors such as substrates,growth temperature,carrier gas flow rate,system pressure and so on.This will lay the foundation for preparing higher-quality 2D materials by CVD method,and provided reference ideas for the preparation of other novel 2D materials by CVD.

参考文献

[1] 高利芳,宋忠乾,孙中辉.新型二维纳米材料在电化学领域的应用与发展[J].应用化学,2018,35(3):247-258.
[2] Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[3] Somani P R,Somani S P,Umeno M.Planer nano-graphenes from camphor by CVD[J].Chemical Physics Letters,2006,430(1-3):56-59.
[4] Yu Q,Lian J,Siriponglert S,et al.Graphene segregated on Ni surfaces and transferred to insulators[J].Applied Physics Letters,2008,93(11):113103.
[5] Reina A,Jia X,Ho J,et al.Large area,few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Letters,2009,9(1):30-35.
[6] Kim K S,Zhao Y,Jang H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706-710.
[7] Sun J,Lindvall N,Cole M T,et al.Low partial pressure chemical vapor deposition of graphene on copper[J].Ieee Transactions on Nanotechnology,2012,11(2):255-260.
[8] Li X,Magnuson C W,Venugopal A,et al.Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper[J].Journal of the American Chemical Society,2011,133(9):2816-2819.
[9] Mueller N S,Morfa A J,Abou-Ras D,et al.Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition[J].Carbon,2014,78(18):347-355.
[10] Zhang Y,Zhang L,Kim P,et al.Vapor trapping growth of single-crystalline graphene flowers:synthesis,morphology,and electronic properties[J].Nano Letters,2012,12(6):2810-2816.
[11] Li X S,Cai W W,An J H,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
[12] Gao Z,Zhang Q,Naylor C H,et al.Crystalline bilayer graphene with preferential stacking from Ni-Cu gradient alloy[J].ACS Nano,2018,12(3):2275-2282.
[13] Lu G,Wu T,Yuan Q,et al.Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy[J].Nature Communications,2015,6:6160.
[14] Guo N,Wei J,Fan L,et al.Controllable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method[J].Nanotechnology,2012,23(41):415605.
[15] Cretu O,Lin YC,Suenaga K.Evidence for active atomic defects in monolayer hexagonal boron nitride:a new mechanism of plasticity in two-dimensional materials[J].Nano Letters,2014,14(2):1064-1068.
[16] Gnanasekar P,Periyanagounder D,Nallathambi A,et al.Promoter-free synthesis of monolayer MoS2 by chemical vapour deposition[J].Crystengcomm,2018,20(30):4249-4257.
[17] Lee Y H,Zhang X Q,Zhang W J,et al.Synthesis of large-area MoS2atomic layers with chemical vapor deposition[J].Advanced Materials,2012,24(17):2320-2325.
[18] Yan P,Wang J,Yang G,et al.Chemical vapor deposition of monolayer MoS2 on sapphire,Si and GaN substrates[J].Superlattices and Microstructures,2018,120:235-240.
[19] 宋瑞利,刘平,张柯,等.铜箔表面化学气相沉积少层石墨烯[J].材料科学与工程学报,2016,34(1):96-100.
[20] 金荣涛,赵莉.压延铜箔制备技术分析[J].上海有色金属,2014,35(2):86-90.
[21] Ling X,Lee YH,Lin Y,et al.Role of the seeding promoter in MoS2growth by chemical vapor deposition[J].Nano Letters,2014,14(2):464-472.
[22] 王立锋.大尺寸六方氮化硼二维晶体的CVD生长及机制研究[D].哈尔滨:哈尔滨工业大学,2016.
[23] Shi Y,Hamsen C,Jia X,et al.Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J].Nano Letters,2010,10(10):4134-4139.
[24] Kim K K,Hsu A,Jia X,et al.Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J].Nano Letters,2012,12(1):161-166.
[25] Yu Y,Li C,Liu Y,et al.Controlled Scalable Synthesis of Uniform,High-Quality Monolayer and Few-layer MoS2 Films[J].Scientific Reports,2013,3(1):1866.
[26] Qian S,Yang R,Lan F,et al.Growth of continuous MoS2 film with large grain size by chemical vapor deposition[J].Materials Science in Semiconductor Processing,2019,93(13):317-323.
Options
文章导航

/