开发与应用

水泥基复合材料Seebeck热电性能研究现状与展望

展开
  • 1.青岛理工大学土木工程学院,青岛266033;
    2.山东省蓝色经济区工程建设与安全协同创新中心,青岛266033
滕飞(1993-),男,硕士研究生,主要从事复合材料与结构的研究,E-mail:361666677@qq.com。

收稿日期: 2020-01-19

  修回日期: 2021-07-07

  网络出版日期: 2021-09-30

基金资助

国家自然科学基金面上项目(51878364,51978353);山东省自然科学基金面上项目(ZR2018MEE043);山东省重大研发计划(公益类科技攻关)项目(2019GSF110008)

State-of-the-art of Seebeck thermoelectric behavior of cement-based composite

Expand
  • 1. School of Civil Engineering,Qingdao University of Technology,Qingdao 266033;
    2. Collaborative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone,Qingdao 266033

Received date: 2020-01-19

  Revised date: 2021-07-07

  Online published: 2021-09-30

摘要

介绍了材料Seebeck效应的定义及其原理,并对比分析了水泥基材料单掺和复掺不同热电相材料(碳材料、金属氧化物、金属和部分工业废弃物)的热电性能,发现在温差作用下产生多重热电载流子的迁移和扩散作用。复掺热电相的水泥基复合材料不仅具有更高的Seebeck系数,而且其热电性能更加稳定,这对基于水泥基复合材料温差发电效应的交通结构融雪化冰、海洋混凝土结构腐蚀阴极防护等具有重要工程意义。

本文引用格式

滕飞, 罗健林, 张纪刚, 冯超, 高嵩 . 水泥基复合材料Seebeck热电性能研究现状与展望[J]. 化工新型材料, 2021 , 49(9) : 217 -221 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.09.047

Abstract

Firstly,the definition of material Seebeck effect and its principle were introduced,then the thermoelectric properties of cement-based material with different thermoelectric phase materials (carbon material,metal oxide,metal and some industrial waste) were investigated,which found that the migration and diffusion of multiple thermoelectric carriers were generated under the effect of temperature difference.Cement-based composites mixed with compounded thermoelectric phases not only have higher Seebeck coefficient,but also have more stable thermoelectric properties.It is of great engineering significance to melt ice of traffic structure and cathodic protection against corrosion of marine concrete structures based on the temperature difference power generation effect of cement-based composites.

参考文献

[1] 黄世峰,徐荣华,刘福田,等.水泥基功能复合材料研究进展及应用[J].硅酸盐通报,2003(4):58-63.
[2] 钱伯章.热电转换材料及应用进展[J].化工新型材料,2009,37(6):26-27.
[3] 马林,孙艳云,张钰祺,等.城市热岛效应增温对环境气温的影响[J].装备环境工程,2019,16(6):78-84.
[4] 程晓敏,陶冰梅,朱闯,等.四元碳酸盐相变储热材料的制备及热物性研究[J].化工新型材料,2014,6:49-51.
[5] 陈东勇,应鹏展,崔教林,等.热电材料的研究现状及应用[J].材料导报,2008,22(S1):280-282.
[6] 李贺军,张守阳.新型碳材料[J].新型工业化,2016,6(1):15-37.
[7] 孙明清,李卓球,沈大荣.炭纤维水泥基复合材料的Seebeck效应[J].材料研究学报,1998(1):111-112.
[8] 孙明清,李卓球,毛起炤,等.影响CFRC的Seebeck效应的主要因素[J].材料研究学报,1998(3):329-331.
[9] 魏剑,赵莉莉,张倩,等.碳纤维水泥基复合材料Seebeck效应研究现状[J].材料导报,2017,31(1):84-89.
[10] Wen S H,Chung D D L.Seebeck effect in carbon fiber-reinforced cement[J].Cement and Concrete Research,1999,29(12):333-338.
[11] 陈兵,姚武,吴科如.掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J].建筑材料学报,2004(3):261-268.
[12] 郝磊.碳纤维增强水泥基复合材料热电性能研究[D].西安:西安建筑科技大学,2015.
[13] 周浩,陈隆道.导电混凝土及其应用[J].混凝土与水泥制品,1992(4):12-13,38.
[14] 赵文艳,张文福,马昌恒,等.石墨导电混凝土力学性能与热电特性[J].大庆石油学院学报,2008,32(6):83-85,92,126.
[15] 赵莉莉.碳材料增强水泥基复合材料热电性能研究[D].西安:西安建筑科技大学,2017.
[16] 叶芸,肖晓晶,郭太良,等.碳纳米管表面化学镀银及场发射性能研究[J].功能材料,2012,43(9):1221-1224.
[17] Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(87):1-12.
[18] Small J P,Perez K M,Kim P.Modulation of thermoelectric power of individual carbon nanotubes[J].Physical Review Letters,2003,91(25):12475-12481.
[19] Wen S H,Chung D D L.Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J].Cement & Concrete Research,2000,30(8):1295-1298.
[20] Majumdar A.Thermoelectricity in semiconductor nanostructures[J].Science,2004,303(5659):777.
[21] Ji T,Zhang X,Li W H.Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J].Construction and Building Materials,2016,115:576-581.
[22] Song F F,Wu L M,Liang S.Giant Seebeck coefficient thermoelectric device of MnO2 powder[J].Nanotechnology,2012,23(8):085401.
[23] 李伟华,廖晓,季涛,等.MnO2水泥基复合材料热电性能[J].建筑材料学报,2017,20(5):770-773.
[24] 吴旌贺,史小波,赵先林.热电材料低维化的研究进展[J].河南教育学院学报(自然科学版),2011,20(3):25-28.
[25] 肖龙,季涛,廖晓,等.氧化镍水泥基复合材料热电性能研究[J].新型建筑材料,2019,46(3):32-35.
[26] Wen S H,Chung D D L.Seebeck effect in steel fiber reinforced cement[J].Cement and Concrete Research,2000,30(4):661-667.
[27] 袁宏涛,贵永亮,张顺雨.钢渣综合利用综述[J].山西冶金,2016,39(1):35-37,101.
[28] 唐祖全,童成丰,钱觉时,等.钢渣混凝土的Seebeck效应研究[J].重庆建筑大学学报,2008(3):125-128.
[29] 王子仪,王智,宁美,等.热电功能砂浆的塞贝克效应及其增强[J].建筑材料学报,2018,21(5):701-706.
[30] 徐毓龙著,氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社,1991:167-171.
[31] 贾兴文,张新,马冬,等.导电混凝土的导电性能及影响因素研究进展[J].材料导报,2017,31(21):90-97.
[32] 张其颖.碳纤维增强水泥混凝土导电机理的研究[J].硅酸盐通报,2003(3):22-24,28.
[33] Cao H Y,Yao W,Qin J J.Seebeck effect in graphite-carbon fiber cement based composite[J].Advanced Materials Research,2010,177(4):566-569.
[34] 薛飞.环境载荷对膨胀石墨/碳纤维增强水泥基复合材料热电性能的影响研究[D].西安:西安建筑科技大学,2018.
[35] 张倩.EGCFRC的Seebeck效应多类型界面散射强化机理研究[D].西安:西安建筑科技大学,2017.
[36] 姚武,左俊卿,吴科如.碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J].功能材料,2013,44(13):1924-1927,1931.
[37] 刘大晨,刘策,汤琦.多壁碳纳米管/三元乙丙橡胶复合材料的热电效应及其力学性能研究[J].化工新型材料,2018,46(1):129-132.
[38] Wei J.Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca3Co4O9[C].中国仪器仪表学会仪表材料分会,2012:370-373.
[39] Wei J,Hao L,He G,P,et al.Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface[J].Ceramics International,2014,40(6):8261-8270.
[40] 聂证博.高含量金属氧化物水泥基复合材料Seebeck效应研究[D].西安:西安建筑科技大学,2017.
[41] 姚武,夏强.碲化铋-碳纤维水泥基材料的制备及热电性能[J].功能材料,2014,45(15):15134-15137,15142.
[42] 胡淑红.BiTe基材料的制备及其热电性能研究[D].杭州:浙江大学,2001.
[43] Zuo J Q,Yao W,Qin J J.Enhancing the thermoelectric properties in carbon fiber/cement composites by using steel slag[J].Key Engineering Materials,2013,2178(1078):103-107.
[44] Dresselhaus M S,Chen G,Tang M Y,et al.New directions for low-dimensional thermoelectric materials[J].Advanced Materials,2007,38(26):1043-1053.
Options
文章导航

/