新型碳材料具有稳定性好、机械强度高和比表面积大等特点,在储氢材料、超级电容器、催化材料等领域应用广泛。锂电池具有安全、高效、能量密度大等优势,是目前综合性能最好的高效储能设备。为了更好地了解新型碳材料在锂电池中的性能研究进展,介绍了新型碳材料富勒烯、石墨烯、碳纳米管和石墨炔的结构与性质,综述了新型碳材料在提高锂离子电池负极能量密度和抑制锂金属电池锂枝晶生长等方面的研究进展。新型碳材料在提升锂电池性能中展现出了重要的应用价值。
The new carbon materials have the characteristics of good stability,high mechanical strength and large specific surface area,widely used in hydrogen storage materials,supercapacitors,catalytic materials and other fields.As the current efficient energy storage device with the best comprehensive performance,Li-ion batteries have the advantages of safety,high efficiency and large energy density.In order to better understand the research progress of the performance of the new carbon materials in Li-ion batteries,the structure and properties of the new carbon materials including fullerene,graphene,carbon nanotubes and graphdiyne were introduced.The research progress of the materials in improving the energy density of the negative electrode of Li-ion batteries and inhibiting the growth of lithium dendrites in Li metal batteries were reviewed.The applications of new carbon materials shown important value in improving the performance of Li-ion batteries.
[1] Wang X R,Zhou P.Special focus on two-dimensional materials and device applications[J].Science China Information Sciences,2019,62(12):220400.
[2] Nishi Y.The development of lithium ion secondary batteries[J].The Chemical Record,2001,1(5):406-413.
[3] Bruce P G,Freunberger S A,Hardwick L J,et al.Li-O2 and Li-S batteries with high energy storage[J].Nature Materials,2012,11(1):19-29.
[4] 沈馨,张睿,程新兵,等.锂枝晶的原位观测及生长机制研究[J].储能科学与技术,2017,6(3):418-432.
[5] 高鹏,韩家军,朱永明,等.金属锂二次电池锂负极改性[J].化学进展,2009,21(7):1678-1686.
[6] 李亚男,何文军,杨为民.新型纳米碳材料的应用新进展[J].化工新型材料,2014,42(3):179-182.
[7] 章仁毅,张小燕,樊华军,等.基于碳纳米管的超级电容器研究进展[J].应用化学,2011,28(5):489-499.
[8] Zhong Y J,Zhu H W.Structure,properties and potential applications of graphene[J].Physics,2018,47(11):704-714.
[9] Jia Z Y,Li Y J,Zuo Z C,et al.Synthesis and properties of 2D carbon graphdiyne[J].Account of Chemical Research,2017,50(10):2470-2478.
[10] Teprovich J A,Weeks J A,Ward P,et al.Hydrogenated C60 as high-capacity stable anode materials for Li-ion batteries[J].ACS Applied Energy Materials,2019,2(9):6453-6460.
[11] Jang B,Koo J,Park M,et al.Graphdiyne as a high-capacity lithium ion battery anode material[J].Applied Physics Letters,2013,103(26):1-5.
[12] Shang H,Li Y L,Zuo Z C,et al.Ultrathin graphdiyne nanosheets in-situ grown on copper nanowires and its performance as lithium-ion battery anodes[J].Angewandte Chemie,2017,57(3):774-778.
[13] Wu Y Z,Brahma S,Weng S C,et al.Reduced graphene oxide (RGO)-SnOx(x=0,1,2) nanocomposite as high-performance anode material for lithium ion batteries[J].Journal of Alloys and Compounds,2019,818:152889.
[14] Bubulinca C,Sapurina I,Kazantseva N E,et al.Fabrication of a flexible binder-free lithium manganese oxide cathode for secondary Li-ion batteries[J].Journal Pre-proof,2019,19:30754.
[15] Ding D,Maeyoshi Y,Kubota M,et al.Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J].Journal of Power Sources,2019,449:227553.
[16] Chung S,Chang C,Manthiram A.Progress on the critical parameters for lithium sulfur batteries to be practically viable[J].Advance Functional Materials,2018,28:1801188.
[17] Fan X J,Sun W W,Meng F C,et al.Advanced chemical strategies for lithium sulfur batteries:a review[J].Green Energy Environ,2018,3(1):8-25.
[18] Shi H,Lv W,Zhang C,et al.Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries:confining,trapping,blocking,and breaking up[J].Advanced Functional Materials,2018,28:1800508.
[19] Zhang G,Peng H,Zhao C,et al.The radical pathway based on a lithium-metal-compatible high dielectric electrolyte for lithium-sulfur batteries[J].Angewandte Chemie International Edition,2018,57(51):16732-16736.
[20] Chen C,Peng H,Huang J,et al.A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries[J].Advanced Materials,2017,29(23):1606802.
[21] Lang S Y,Xiao R J,Gu L,et al.Interfacial mechanism in lithium sulfur batteries:how salts mediate the structure evolution and dynamics[J].Journal of American Chemical Society,2018,140(26):8147-8155.
[22] Chen P,Wang Z,Zhang B,et al.Multi-functional TiO2 nanosheets/carbon nanotubes modified separator enhanced cycling performance for lithium-sulfur batteries[J].International Journal of Energy Research,2020,44(4):3231-3240.
[23] Wang Y Q,He J J,Zhang Z Q,et al.Graphdiyne-modified polyimide separator:a polysulfide-immobilizing net hinders the shuttling of polysulfides in lithium-sulfur battery[J].ACS Applied Materials Interfaces,2019,11(39):35738-35745.
[24] Shang H,Zuo Z C,Dong X,et al.Efficiently suppressing lithium dendrites on atomic level by ultrafiltration membrane of graphdiyne[J].Materials Today Energy,2018,10(9):191-199.
[25] Shang H,Gu Y,Wang Y B,et al.N-doped graphdiyne coating for dendrite-free lithium metal battery[J].Chemistry A European Journal,2020,26:5434-5440.
[26] Shang H,Zuo Z C,Li Y L.Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes[J].ACS Applied Materials Interfaces,2019,11(19):17678-17685.