Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (11): 260-262    
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
一种基于纳米CaCO3的绿色、简便制备超疏水涂层的方法
胡建平, 方针, 陆佳政, 金灵华
电网输变电设备防灾减灾国家重点实验室(国网湖南省电力公司防灾减灾中心),长沙410129
Green and facile method for fabricating superhydrophobic coating based on nano-CaCO3
Hu Jianping, Fang Zhen, Lu Jiazheng, Jin Linghua
State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment (State Grid Hunan Electric Power Corporation of Disaster Prevention and Reduction Center),Changsha 410129
下载:  PDF (3393KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以乙醇为溶剂,采用溶液聚合法合成含氟丙烯酸酯聚合物,通过纳米CaCO3与含氟丙烯酸酯聚合物共混制备有机无机复合涂层。纳米CaCO3的加入使复合涂层的接触角达到150°以上;以乙醇为溶剂,极大降低了有机溶剂挥发对生物的危害。由于有机无机共混法操作简单,无需特殊设备,因此该制备超疏水涂层的方法具有绿色、简便的显著特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡建平
方针
陆佳政
金灵华
关键词:  超疏水  纳米CaCO3  含氟丙烯酸酯  有机-无机共混法    
Abstract: The fluorinated acrylate copolymers were prepared through solution polymerization using ethanol as solvent.The organic-inorganic composite coatings were fabricated by mixing nano-CaCO3 and the fluorinated acrylate copolymers.The water contact angle of the coatings could achieve 150°when introduction of an appropriate amount of nano-CaCO3 into the fluorinated acrylate copolymers.It immensely reduced damage to organisms from solvent volatilize by using ethanol as solvent.Because the organic-inorganic blending method was simple and it did not need special equipment,it had the green and facile characteristics to fabricate superhydrophobic coatings.
Key words:  superhydrophobicity    nano-CaCO3    fluorinated acrylate copolymer    organic-inorganic blending method
收稿日期:  2018-06-05                出版日期:  2019-11-20      发布日期:  2019-12-04      期的出版日期:  2019-11-20
基金资助: 湖南省自然科学基金(2015JJ4007);国家电网有限公司科技项目(5216A01600W3)
作者简介:  胡建平(1987-),男,硕士,工程师,主要研究方向为输电线路防冰材料和疏水性涂层材料。
引用本文:    
胡建平, 方针, 陆佳政, 金灵华. 一种基于纳米CaCO3的绿色、简便制备超疏水涂层的方法[J]. 化工新型材料, 2019, 47(11): 260-262.
Hu Jianping, Fang Zhen, Lu Jiazheng, Jin Linghua. Green and facile method for fabricating superhydrophobic coating based on nano-CaCO3. New Chemical Materials, 2019, 47(11): 260-262.
链接本文:  
https://www.hgxx.org/CN/  或          https://www.hgxx.org/CN/Y2019/V47/I11/260
[1] Zhu T,Cai C,Duan C,et al.Robust polypropylene fabrics super-repelling various liquids:a simple,rapid and scalable fabrication method by solvent swelling[J].ACS Appl Mater Interfaces,2015,7(25):13996-14003.
[2] Li X,Shen J.A facile two-step dipping process based on two silica systems for a superhydrophobic surface[J].Chem Commun,2011,47(38):10761-10763.
[3] Huang Y F,Huang C,Zhong Y L,et al.Preparing superhydrophobic surfaces with very low contact angle hysteresis[J].Surf Eng,2013,29(8):633-636.
[4] Wang C,Tang F,Li Q,et al.Spray-coated superhydrophobic surfaces with wear-resistance,drag-reduction and anti-corrosion properties[J].Colloids Surf,A,2017,514:236-242.
[5] Qian H,Xu D,Du C,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J].J Mater Chem A,2017,5(5):2355-2364.
[6] Zhang H,Hou C,Song L,et al.A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating[J].Chem Eng J,2018,334:598-610.
[7] Suryaprabha T,Sethuraman M G.Design of electrically conductive superhydrophobic antibacterial cotton fabric through hierarchical architecture using bimetallic deposition[J].J Alloys Compd,2017,724:240-248.
[8] Suryaprabha T,Sethuraman M G.Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric[J].Cellulose,2017,24(1):395-407.
[9] Nguyen T B,Park S,Lim H.Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces[J].Appl Surf Sci,2018,435:585-591.
[10] Zhan Y L,Ruan M,Li W,et al.Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior[J].Colloids Surf A,2017,535:8-15.
[11] Yu M,Wang Q,Zhang M,et al.Facile fabrication of raspberry-like composite microspheres for the construction of superhydrophobic films and applications in highly efficient oil-water separation[J].RSC Adv,2017,7(63):39471-39479.
[12] Zhang L,Li H,Lai X,et al.Thiolated graphene-based superhydrophobic sponges for oil-water separation[J].Chem Eng J,2017,316:736-743.
[13] Huang Y,Yi S,Lv Z,et al.Facile fabrication of superhydrophobic coatings based on two silica sols[J].Colloid Polym Sci,2016,294(9):1503-1509.
[1] 余春浩. 超疏水表面结构对冷凝结露生长现象影响的研究[J]. 化工新型材料, 2019, 47(9): 187-190.
[2] 赵海谦, 董明, 王忠华, 刘立君, 刘晓燕. 定向碳纳米管阵列应用的研究进展[J]. 化工新型材料, 2019, 47(8): 13-17.
[3] 杨可成, 徐丽慧, 孟云, 盛宇, 王黎明. 耐久性超疏水表面的研究进展[J]. 化工新型材料, 2019, 47(7): 232-236.
[4] 张雪梅, 王航, 王广, 高云艳, 付峰, 高晓明, 牛凤兴. 低成本超疏水棉布的制备及其应用于油水混合物分离的研究[J]. 化工新型材料, 2019, 47(5): 260-263.
[5] 顾晓茵, 徐丽慧, 张旋宇, 张怡蓓, 寿铭洋, 宋俊, 周思敏. 基于SiO2气凝胶的超疏水功能棉织物的制备及性能研究[J]. 化工新型材料, 2019, 47(2): 260-267.
[6] 殷允杰, 王腾飞, 宋伟华, 赵涛, 王潮霞. UV光固化型功能溶胶改性棉织物性能研究[J]. 化工新型材料, 2019, 47(2): 211-214.
[7] 彭华乔, 李林, 夏祖西, 苏正良. 超疏水材料防冰研究进展[J]. 化工新型材料, 2019, 47(11): 1-5.
[8] 陈凯, 王强, 孙婷, 游敏, 夏祖西. 化学刻蚀对超疏水表面性能的影响研究[J]. 化工新型材料, 2018, 46(6): 206-209.
[9] 杨国领, 高大海, 刘鹏飞, 贾梦秋. 微纳分级结构ZnO-氟碳树脂超疏水表面的制备研究[J]. 化工新型材料, 2018, 46(6): 65-69.
[10] 黄艳芬, 胡未能, 石其坤, 闫自豪, 田长丙, 刘巍, 吕早生. 基于聚二甲基硅氧烷和纳米CaCO3的超疏水自清洁涂层的制备[J]. 化工新型材料, 2018, 46(5): 242-244.
[11] 郑君红, 张丹, 康怀萍, 徐丹, 余光华, 龙柱. 棉织物的超疏水整理及其性能表征[J]. 化工新型材料, 2018, 46(4): 205-208.
[12] 罗源军. 含氟丙烯酸酯四元共聚乳液的合成与性能研究[J]. 化工新型材料, 2018, 46(3): 232-234.
[13] 赵明远, 王煦漫, 张彩宁, 段凯迪. 仿蝶翅超疏水涂层的制备研究[J]. 化工新型材料, 2018, 46(3): 127-129.
[14] 唐健锋, 路琴, 袁杰, 吴晓倩, 刘涛, 张子正. 纳米CaCO3及偶联剂对聚氯乙烯/稻壳木塑复合材料摩擦性能的影响[J]. 化工新型材料, 2018, 46(1): 210-213.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn