Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (11): 141-144    
  科学研究 本期目录 | 过刊浏览 | 高级检索 |
CoP/RGO复合材料的制备及结构性能研究
李俊莉, 杨玉琴, 皇甫鑫强, 陈选欣
曲靖师范学院化学与环境科学学院,曲靖655011
Study on the preparation and structure property of CoP/RGO
Li Junli, Yang Yuqin, Huangfu, Xinqiang, Chen Xuanxin
College of Chemistry and Environmental Science,Qujing Normal University,Qujing 655011
下载:  PDF (2532KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过原位还原将金属钴(Co)粒子负载于氧化石墨烯(GO)合成钴/还原氧化石墨烯(RGO)(Co/RGO),在氩气保护条件下与次磷酸钠(NaH2PO2)混合加热反应制得磷化钴(CoP)/RGO(CoP/RGO)复合材料,并对样品进行了表征,在0.5mol/L的硫酸溶液中采用线性扫描法测试了材料的电催化析氢性能。结果表明:负载于石墨烯上的CoP纳米颗粒形貌单一,晶格间距0.24nm,Co和P的比例约1∶1,复合材料做成的电极其催化析氢过电位显著减小为116mV,经过500次循环后性能略有衰减,析氢过电位为130mV,性能衰减率为12%。与单一材料相比具有较高的催化活性,有效提高了电催化析氢性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Li Junli
Yang Yuqin
Huangfu
Xinqiang
Chen Xuanxin
关键词:  磷化钴纳米颗粒  复合材料  结构  电催化    
Abstract: The CoP/RGO composite materials were synthesized by in-situ reduction in the argon protection environment.The compositions,structures,and morphologies of the composites were characterized by Raman spectra.The hydrogen evolution reaction was tested by linear scanning in 0.5mol/L sulfuric acid solution.The results showed that the nano-sized particles of the CoP were relatively dispersed on the graphene,the lattice spacing of CoP was 0.24nm and the ratio of Co and P was approximately 1∶1.It was found that the CoP/RGO composite showed an enhanced catalytic activity with the over potential 116mV.The performance degradation rate was about 12%(from 116mV to 130mV) after 500 cycles.Compared with the single material,the composite had higher catalytic activity,which effectively increased the activity of electrocatalytic hydrogenation.
Key words:  CoP nanoparticle    composite    structure    electrocatalysis
收稿日期:  2018-06-04                出版日期:  2019-11-20      发布日期:  2019-12-04      期的出版日期:  2019-11-20
基金资助: 云南省大学生创新创业训练项目(2077360150)
作者简介:  李俊莉(1979-),女,硕士,讲师,从事金属有机材料研究。
引用本文:    
李俊莉, 杨玉琴, 皇甫鑫强, 陈选欣. CoP/RGO复合材料的制备及结构性能研究[J]. 化工新型材料, 2019, 47(11): 141-144.
Li Junli, Yang Yuqin, Huangfu, Xinqiang, Chen Xuanxin. Study on the preparation and structure property of CoP/RGO. New Chemical Materials, 2019, 47(11): 141-144.
链接本文:  
https://www.hgxx.org/CN/  或          https://www.hgxx.org/CN/Y2019/V47/I11/141
[1] Lewis N S,Nocera D G.Powering the planet:chemical challenges in solar energy utilization[J].Proc Natl Acad Sci USA,2006,103(43):15729-15735.
[2] Chen H M,Chen C K,Liu R S,et al.Nano-architecture and material designs for water splitting photoelectrodes[J].Chem Soc Rev,2012,41:5654-5671.
[3] Li Y G,Wang H L,Xie L M,et al.MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction[J].J Am Chem Soc,2011,133(19):7296-7299.
[4] Gray H B.Powering the planet with solar fuel[J].Nat Chem,2013,1(1):8-12.
[5] Oyama S T,Gott T,Zhao H,et al.Transition metal phosphide hydroprocessing catalysts:a review[J].Catal Today,2009,143(1/2):94-107.
[6] Popczun E J,McKone J R,Read C G,et al.Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction l[J].J Am Chem Soc,2013,135(25):9267-9270.
[7] Xu Y,Wu R,Zhang J,et al.Anion-exchange synthesis of nanoporousFeP nanosheets as electrocatalysts for hydrogen evolution reaction[J].Chem Commun,2013,49(59):6656-6658.
[8] Ma L B,Shen X P,Zhou H,et al.CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction[J].J Mater Chem A,2015,3(10):5337-5343.
[9] Tian J Q,Liu Q,Asiri A M,et al.Self-supported nanoporous cobalt phosphide nanowire arrays:an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J].J Am Chem Soc,2014,136(21):7587-7590.
[10] Tian J Q,Liu Q,Cheng N Y,et al.Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water[J].Angew Chem Int Ed Engl,2014,53(36):9577-9581.
[11] Callejas J F,Read C G,Popczun E J,et al.Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP[J].2015,27(10):3769-3774.
[12] Jaramillo T F,Jorgensen K P,Bonde J,et al.Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J].Science,2007,317(5834):100-102.
[13] Liang Y Y,Li Y G,Wang H L,et al.Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis[J].J Am Chem Soc,2013,135(6):2013-2036.
[14] Guo L T,Cai Y Y,Ge J M,et al.Multifunctional Au-Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane[J].ACS Catal,2015,5(1):388-392.
[15] 曹寅亮.高活性镍基析氢电极的制备及其在碱性条件下析氢行为研究[D].北京:北京化工大学,2013.
[16] Xu C,Wang X,Zhu J W.Graphene-metal particle nanocomposites[J].J Phys Chem C,2008,112(50):19841-19845.
[17] Stankovich S,Dikin D A,Piner R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558-1565.
[18] 彭海岳,马媛媛,刘嘉宁,等.CoP/Co2P/C纳米材料用于全pH值电催化析氢[J].分子科学学报,2017(6):455-459.
[1] 余春浩. 超疏水表面结构对冷凝结露生长现象影响的研究[J]. 化工新型材料, 2019, 47(9): 187-190.
[2] 贾天飞, 杨海存, 马文中, 龚方红, 陶国良, 刘春林. 相容剂对聚丙烯/聚乙醇酸共混物结构与性能的影响[J]. 化工新型材料, 2019, 47(9): 203-206.
[3] 周孟娇, 杨思彤, 贾清秀. 纤维素纳米晶材料研究进展[J]. 化工新型材料, 2019, 47(9): 40-44.
[4] 卢彦, 李胜, 蓝利芳, 卢璐, 李军. 石榴石型固体电解质Li7La3Zr2O12的掺杂改性及应用研究进展[J]. 化工新型材料, 2019, 47(9): 50-53.
[5] 张兆红, 李培培, 邢立华, 袁霄宇. WCB/HNBR/NBR耐热密封复合材料的制备与性能研究[J]. 化工新型材料, 2019, 47(9): 66-69.
[6] 葛铁军, 毛洪雨, 徐志华, 张瑾. 四苯基苯基甲基乙烯基硅橡胶的合成及性能研究[J]. 化工新型材料, 2019, 47(9): 62-65.
[7] 秦艳丽, 徐海萍, 代秀娟, 翟月, 杨丹丹, 王静荣. 改性石墨烯/高密度聚乙烯复合材料PTC性能研究[J]. 化工新型材料, 2019, 47(9): 74-77.
[8] 赵洪国, 徐典宏, 杨玉琼, 李旭辉, 王三龙, 杜国旺. 石墨烯丁腈橡胶复合材料性能研究[J]. 化工新型材料, 2019, 47(9): 78-81.
[9] 张强, 张卓, 杨威, 张均, 姜志国. 结构型阻燃聚氨酯硬质泡沫研究进展[J]. 化工新型材料, 2019, 47(9): 211-214.
[10] 陈建军, 李永宇, 雷淑慧, 张晓霞, 刘杰, 邵俊芳. TiO2分级结构/C3N4复合材料的制备及光催化性能研究[J]. 化工新型材料, 2019, 47(9): 94-98.
[11] 陈超峰, 杨文良, 彭涛. 含氯改性芳纶Ⅲ制备及其性能研究[J]. 化工新型材料, 2019, 47(9): 114-118.
[12] 秦汤, 孙宏浩. Ag+/TiO2/SiO2纳米复合材料的制备及抗变色性能、抑菌性能研究[J]. 化工新型材料, 2019, 47(9): 122-126.
[13] 汤进, 毕松, 侯根良, 王鑫, 刘朝辉, 苏勋家. 柔性还原氧化石墨烯/三元乙丙橡胶复合材料的制备及其吸波性能研究[J]. 化工新型材料, 2019, 47(8): 61-65.
[14] 郑云龙, 王进美, 华柄宇, 石煜, 刘红媛, 畅娇, 王志强. 石墨烯相变调温抗静电复合材料的制备与性能研究[J]. 化工新型材料, 2019, 47(8): 123-126.
[15] 盛盼盼, 孙富安, 陈乐, 张致慧, 何明阳. ZIF-8负载离子交换树脂复合材料对铀酰的吸附行为研究[J]. 化工新型材料, 2019, 47(8): 256-260.
[1] Huang Fei, Ma Xin, Hu Xueqian, Li Changjiang, Wu Konglin, Wei Xianwen. Controllable synthesis and property of N-methyl-2-[4-dimethyl-amido] phenyl-3,4-fulleropyrrolidine derivative microflower structure[J]. New Chemical Materials, 2018, 46(2): 114 -118 .
[2] Su Yinhe, Yu Junrong, Wang Yan, Zhu Jing, Hu Zuming. Study on preparation and kinetics of pCBT/MWCNT nanocomposite[J]. New Chemical Materials, 2018, 46(2): 160 -163 .
[3] Zhang Jie, Zhou Lina, Wang Aimin, Dai Jingui, Zhao Songlin. Recent progress of mesoporous self-assembled rare earth luminescent material[J]. New Chemical Materials, 2018, 46(11): 16 -19 .
[4] Zhou Bo, Wang Yinggang, Cui Xiaowei, Ma Ronghan, Li Xiaochuan. Study on preparation of RGO/TiO2 and its application in photoelectrocatalytic reduction for carbon dioxide[J]. New Chemical Materials, 2018, 46(12): 121 -124 .
[5] Yuan Jingjing, Liu Zhenmin, He Dafang, Bao Ningzhong, Che Jianfei. Study on carbonitride/graphene modified Li4Ti5O12 as lithium cathode material[J]. New Chemical Materials, 2018, 46(12): 129 -132 .
[6] Li Yongjian, Dai Haipo, Li Jiwei, Feng Nana, Zhai Hui, Li Wei. Research progress of several transition metal oxides nanomaterials in non-enzymatic glucose sensor[J]. New Chemical Materials, 2019, 47(2): 1 -5 .
[7] Wang Haiqiao ,Liu Weiwei ,Ye Jun ,Qiao Zhi,Li Qi ,Li Xiaoyu. Preparation of cyclotriphosphazene derivative with different functional terminal groups via thiol-ene click[J]. New Chemical Materials, 2019, 47(3): 108 -112 .
[8] Ma Xiaokun, Zhang Huidong, Ma Bole, Zhao Jinde, Lu Shulai, Yi Yinhua, Shang Zuzheng, Luo Changrui. Preparation of carbon fiber/ABS composite for 3D printing[J]. New Chemical Materials, 2019, 47(9): 229 -231 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn