Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (6): 1-6    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
石墨烯/TiO2基三元复合材料的制备及应用研究进展
辛王鹏1, 李艳敬1,2, 周国伟1*
1.山东省高校轻工精细化学品重点实验室,齐鲁工业大学(山东省科学院)化学与制药工程学院,济南250353;
2.兖州煤业股份有限公司,邹城273500
Research progress on preparation and application of graphene/TiO2-based ternary composite
Xin Wangpeng1, Li Yanjing1,2, Zhou Guowei1
1.Key Laboratory of Fine Chemicals in Universities of Shandong,School of Chemistry and Pharmaceutical Engineering,Qilu University of TechnologyShandong Academy of Sciences,Jinan 250353;
2.Yanzhou Coal Mining Company Limited,Zoucheng 273500
下载:  PDF (1210KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯/TiO2基三元复合材料具有优异的物理、化学性质,相较于石墨烯/TiO2二元复合物,三元复合材料具有更优异的电化学性能和光催化活性。综述了石墨烯/TiO2/金属单质、石墨烯/TiO2/金属氧化物、石墨烯/TiO2/金属硫化物复合材料的制备方法,介绍了这些复合材料在锂离子电池、染料敏化太阳能电池、光催化等领域的应用,并对石墨烯/TiO2基三元复合材料的合成与应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛王鹏
李艳敬
周国伟
关键词:  石墨烯/TiO2  三元复合材料  电化学性能  光催化性能    
Abstract: Graphene/TiO2-based ternary composites have excellent physical and chemical properties.Compared with graphene/TiO2 cmposites,ternary composites have more excellent electrochemical properties and photocatalytic activity.The preparation methods of graphene/TiO2/metal element,graphene/TiO2/metal oxide,graphene/TiO2/metal sulfide were reviewed.Furthermore,the applications of these composites for lithium ion battery,dye-sensitized solar cells and photocatalysis were discussed.The synthesis and application about graphene/TiO2-based ternary composites were outlooked.
Key words:  graphene/TiO2    ternary composite    electrochemil property    photocatalytic performance
收稿日期:  2018-01-19                出版日期:  2019-06-20      发布日期:  2019-07-05      期的出版日期:  2019-06-20
基金资助: 国家自然科学基金(51372134,51572124)资助
通讯作者:  周国伟(1965-),男,教授,从事纳米复合材料的制备及应用研究工作。   
作者简介:  辛王鹏(1994-),男,硕士研究生,研究方向为纳米复合材料。
引用本文:    
辛王鹏, 李艳敬, 周国伟. 石墨烯/TiO2基三元复合材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(6): 1-6.
Xin Wangpeng, Li Yanjing, Zhou Guowei. Research progress on preparation and application of graphene/TiO2-based ternary composite. New Chemical Materials, 2019, 47(6): 1-6.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I6/1
[1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] Zhang Z Y,Xiao F,Guo Y L,et al.One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities[J].ACS Applied Materials & Interfaces,2013,5(6):2227-2233.
[3] Cheng G,Akhtar M S,Yang O B,et al.Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells[J].Applied Materials & Interfaces,2013,5(14):6635-6642.
[4] Li Y,Cui W Q,Liu L,et al.Removal of Cr(Ⅵ) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction[J].Applied Catalysis B Environmental,2016,199:412-423.
[5] Liu Y P,Gao T T,Xiao H,et al.One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents[J].Electrochimica Acta,2017,229:239-252.
[6] Qian W,Greaney P A,Fowler S,et al.Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment[J].ACS Sustainable Chemistry & Engineering,2014,2(7):1802-1810.
[7] Wang P,Han L,Zhu C Z,et al.Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties[J].Nano Research,2011,4(11):1153-1162.
[8] Liu X J,Pan L K,Lv T,et al.Investigation of photocatalytic activities over ZnO-TiO2-reduced graphene oxide composites synthesized via microwave-assisted reaction[J].Journal of Colloid & Interface Science,2013,394:441-444.
[9] Zhang N,Zhang Y H,Pan X Y,et al.Constructing ternary CdS-Graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation[J].Journal of Physical Chemistry C,2012,116(34):18023-18031.
[10] Jia Q,Wang W Z,Zhao J,et al.Synthesis and characterization of TiO2/polyaniline/graphene oxide bouquet-like composites for enhanced microwave absorption performance[J].Journal of Alloys & Compounds,2017,710:717-724.
[11] Liang J C,Wang J,Zhou M X,et al.A graphene-SnO2-TiO2 ternary nanocomposite electrode as a high stability lithium-ion anode material[J].Journal of Alloys & Compounds,2016,673:144-148.
[12] Jiang X,Yang X L,Zhu Y H,et al.Designed synthesis of grapheme-TiO2-SnO2 ternary nanocomposites as lithium-ion anode materials[J].New Journal of Chemistry,2013,37(11):3671-3678.
[13] Alam U,Fleisch M,Kretschmer I,et al.One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites:an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation[J].Applied Catalysis B Environmental,2017,218:758-769.
[14] Xiang Q J,Yu J G,Jaroniec M.Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J].Journal of the American Chemical Society,2012,134(15):6575-6578.
[15] Zhang H,Guo L H,Wang D B,et al.Light-induced efficient molecular oxygen activation on a Cu(Ⅱ)-grafted TiO2/graphene photocatalyst for phenol degradation[J].ACS Applied Materials & Interfaces,2015,7(3):1816-1823.
[16] Pang Q,Zhao Y Y,Bian X F,et al.Hybrid Graphene@MoS2@TiO2 microspheres for use as a high performance negative electrode material for lithium ion batteries[J].Journal of Materials Chemistry A,2017,5(7):3667-3674.
[17] Nimbalkar D B,Lo H H,Ramacharyulu P V R K,et al.Improved photocatalytic activity of RGO/MoS2 nanosheets decorated on TiO2 nanoparticles[J].RSC Advances,2016,6(38):31661-31667.
[18] Mohamed I M A,Dao V D,Yasin A S,et al.Synthesis of novel ZrO2&GO@TiO2,nanocomposite as an efficient photoanode in dye-sensitized solar cells[J].Superlattices & Microstructures,2016,102:235-245.
[19] Luo J,Li D L,Yang Y,et al.Preparation of Au/reduced graphene oxide/hydrogenated TiO2,nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting[J].Journal of Alloys & Compounds,2016,661:380-388.
[20] Wang P,Han L,Zhu C Z,et al.Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties[J].Nano Research,2011,4(11):1153-1162.
[21] Teranishi M,Naya S,Tada H.In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nano-particle-loaded titanium(Ⅳ) dioxide photocatalyst[J].Journal of the American Chemical Society,2010,132(23):7850-7851.
[22] Vijayan B K,Dimitrijevic N M,Wu J S,et al.The effects of Pt doping on the structure and visible light photoactivity of titania Nanotubes[J].Journal of Physical Chemistry C,2010,114(49):21262-21269.
[23] Khan M,Tahir M N,Adil S F,et al.Graphene based metal and metal oxide nanocomposites:synthesis,properties and their applications[J].Journal of Materials Chemistry A,2015,3(37):18753-18808.
[24] Su P G,Chen F Y,Wei C H,et al.Simple one-pot polyol synthesis of Pd nanoparticles,TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature[J].Sensors and Actuators B,2018,254:1125-1132.
[25] Gao W Y,Wang M Q,Ran C X,et al.One-pot synthesis of Ag/r-GO/TiO2 nanocomposites with high solar absorption and enhanced anti-recombination in photocatalytic applications[J].Nanoscale,2014,6(10):5498-5508.
[26] Khalid N R,Ahmed E,Ahmad M,et al.Microwave-assisted synthesis of Ag-TiO2/graphene composite for hydrogen production under visible light irradiation[J].Ceramics International,2016,42(16):18257-18263.
[27] Cho Y J,Kim H I,Lee S,et al.Dual-functional photocatalysis using a ternary hybrid of TiO2,modified with graphene oxide along with Pt and fluoride for H2-producing water treatment[J].Journal of Catalysis,2015,330:387-395.
[28] Xiao H,Guo W J,Sun B,et al.Mesoporous TiO2 and Co-doped TiO2 nanotubes/reduced graphene oxide composites as electrodes for supercapacitors[J].Electrochimica Acta,2016,190:104-117.
[29] Jang J S,Yoon K Y,Xiao X Y,et al.Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy:effects of Ag-Fe2O3 nanocomposite and Sn doping[J].Chemistry of Materials,2009,21(20):4803-4810.
[30] Pan L,Liu Y T,Xie X M,et al.Multi-dimensionally ordered,multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk-membrane-shell superstructures for ultrafast lithium storage[J].Nano Research,2016,9(7):2057-2069.
[31] Zeng X K,Wang Z Y,Wang G,et al.Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide:Z-scheme photocatalysis system for accelerated photocatalytic water disinfection[J].Applied Catalysis B Environmental,2017,218:163-173.
[32] Kumar A,Rout L,Achary L S K,et al.An investigation into the solar light-driven enhanced photocatalytic properties of a graphene oxide-SnO2-TiO2 ternary nanocomposite[J].RSC Advances,2016,6(38):32074-32088.
[33] Bai X,Lyu L L,Ma W Q,et al.Heterogeneous UV/Fenton degradation of bisphenol a catalyzed by synergistic effects of FeCo2O4/TiO2/GO[J].Environmental Science & Pollution Research,2016,23(22):1-10.
[34] Yun Y J,Kim J K,Ju J Y,et al.A morphology,porosity and surface conductive layer optimized MnCo2O4 microsphere for compatible superior Li+ ion/air rechargeable battery electrode materials[J].Dalton Transactions,2016,45(12):5064-5070.
[35] Li G H,Dimitrijevic N M,Chen L,et al.Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites[J].Journal of Physical Chemistry C,2008,112(48):19040-19044.
[36] Yu Y Q,Yan L,Cheng J M,et al.Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation[J].Chemical Engineering Journal,2017,325:647-654.
[37] Li Z J,Huang Z W,Guo W L,et al.Enhanced photocatalytic removal of uranium(Ⅵ) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite[J].Environmental Science & Technology,2017,51(10):5666-5674.
[38] Sharma A,Lee B K.Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photoca-talyst for efficient degradation of o-chlorophenol[J].Journal of Environmental Management,2016,181:563-573.
[39] Xiang Q J,Yu J G,Jaroniec M.Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J].Journal of the American Chemical Society,2012,134(15):6575-6578.
[40] Luo J S,Ma L,He T C,et al.TiO2/(CdS,CdSe,CdSeS) nanorod heterostructures and photoelectrochemical properties[J].Journal of Physical Chemistry C,2012,116(22):11956-11963.
[41] Gao N,Fang X S.Synthesis and development of graphene-inorganic semiconductor nanocomposites[J].Chemical Reviews,2015,115(16):8294-8343.
[42] Lv T,Pan L K,Liu X J,et al.One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange[J].Catalysis Science & Technology,2012,2(4):754-758.
[43] Han W J,Ren L,Gong L J,et al.Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J].ACS Sustainable Chemistry & Engineering,2014,2(4):741-748.
[44] Reddy M V,Subba Rao G V,Chowdari B V.Metal oxides and oxysalts as anode materials for Li ion batteries[J].Chemical Reviews,2013,113(7):5364-5457.
[45] Cheong J Y,Kim C,Jang J S,et al.Rational design of Sn-based multicomponent anodes for high performance lithium-ion batteries:SnO2@TiO2@reduced graphene oxide nanotubes[J].RSC Advances,2016,6(4):2920-2925.
[46] Johra F T,Jung W G.RGO-TiO2-ZnO composites:synthesis,characterization,and application to photocatalysis[J].Applied Catalysis A General,2015,491:52-57.
[47] Almeida B M,Jr M A M,Bettini J,et al.A novel nanocompo-site based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity[J].Applied Surface Science,2015,324:419-431.
[48] Zeng X K,Wang Z Y,Meng N,et al.Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide:ternary nanocomposites for accelerated photocatalytic water disinfection[J].Applied Catalysis B Environmental,2017,202:33-41.
[49] Yang L X,Li Z Y,Jiang H M,et al.Photoelectrocatalytic oxidation of bisphenol a over mesh of TiO2/graphene/Cu2O[J].Applied Catalysis B Environmental,2016,183:75-85.
[50] Hagfeldt A,Boschloo G,Sun L C,et al.Dye-sensitized solar cells[J].Chemical Reviews,2010,110(11):6595-6663.
[51] Wei L G,Chen S S,Yang Y L,et al.Reduced graphene oxide modified TiO2 semiconductor materials for dye-sensitized solar cells[J].RSC Advances,2016,6(103):100866-100875.
[52] Yang Y B,Peng X,Chen S,et al.Performance improvement of dye-sensitized solar cells by introducing a hierarchical compact layer involving ZnO and TiO2 blocking films[J].Ceramics International,2014,40(9):15199-15206.
[53] Taguchi T,Zhang X T,Sutanto I,et al.Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film[J].Chemical Communications,2003,19(19):2480-2481.
[54] Ho P,Bao L Q,Ahn K S,et al.P-type dye-sensitized solar cells:enhanced performance with a NiO compact blocking layer[J].Synthetic Metals,2016,217:314-321.
[55] Mohamed I M A,Dao V D,Yasin A S,et al.Facile synthesis of GO@SnO2/TiO2 nanofibers and their behavior in photovoltaics[J].Journal of Colloid & Interface Science,2017,490:303-313.
[1] 刘平, 龚勇, 李琳, 代祖洋, 辜其隆, 程伟, 陈建. Mn2+、Ti4+掺杂对Li2FeSiO4/C正极材料电化学性能的影响[J]. 化工新型材料, 2019, 47(6): 126-130.
[2] 王凯,高超,邢欢,李松恩,雷世文,宋燕. 超纯煤沥青基活性炭的制备及其电化学性能的研究[J]. 化工新型材料, 2019, 47(4): 140-144.
[3] 谢文菊,童海南,张永录. 绿色高容量电池材料高铁酸钡的制备及性能研究[J]. 化工新型材料, 2019, 47(4): 136-139.
[4] 浦旭清,王开松,王佳磊,谢宇,陈介民,沈超,许宁,岳鹿. 硅/石墨烯/碳复合材料的制备及其储锂性能研究[J]. 化工新型材料, 2019, 47(4): 76-80.
[5] 王丽媛, 李建刚, 姚琼, 何向明, 刘才. 高容量富锂三元材料xLi2MnO3·(1-x)LiNi0.6Co0.2Mn0.2O2的制备与性能研究[J]. 化工新型材料, 2019, 47(3): 67-70.
[6] 李鹏,马晓晓,赵理栋. 活性炭纤维的表面改性及其电化学性能研究[J]. 化工新型材料, 2019, 47(3): 143-148.
[7] 李永刚, 冯攀, 俞小花, 俞双林, 徐亚飞, 和晓才, 谢刚. 不同还原剂还原的石墨烯电化学性能研究[J]. 化工新型材料, 2019, 47(1): 92-95.
[8] 覃利琴, 周凤燕, 陶萍芳, 冯靖红. 沉淀法合成蘑菇状AgBr-Ag3PO4催化剂及其光催化性能研究[J]. 化工新型材料, 2018, 46(7): 194-197.
[9] 张慧莉. 一步法制备Fe2O3/碳纳米管复合材料及其电化学性能研究[J]. 化工新型材料, 2018, 46(7): 148-150.
[10] 吴汉杰. 铝离子电池正极材料的电化学特性研究[J]. 化工新型材料, 2018, 46(6): 190-193.
[11] 何强, 闫共芹. 镍铁氧体-碳微纳异质结构的水热法制备及其性能研究进展[J]. 化工新型材料, 2018, 46(6): 53-56.
[12] 朱甜, 王亮, 周佩, 张汉平. 逐步炭化法制备锂-硫电池正极碳/硫复合材料的研究[J]. 化工新型材料, 2018, 46(5): 91-94.
[13] 马小彪, 陈思浩, 黎朝晖, 胡林. 三维Fe2O3/BC-CNFs复合负极材料的电化学性能研究[J]. 化工新型材料, 2018, 46(4): 131-134.
[14] 何冀川, 王红, 周天明, 喻国强, 刘树信. 固相法合成LiNi0.8Co0.15Al0.05O2正极材料及其电化学性能研究[J]. 化工新型材料, 2018, 46(3): 160-163.
[15] 樊晓东, 王晓清, 殷明月, 王昊, 程博闻. TiO2/石墨烯复合锂离子电池负极材料的研究[J]. 化工新型材料, 2018, 46(3): 107-110.
[1] Shi Xiaodan, Zhang Qingle, Lv Wujuan, Wei Yongteng, Lin Cuiyu. Adsorption characteristics of Cu2+ in aqueous solution on carbon disulfide-modified pine needle[J]. New Chemical Materials, 2017, 45(9): 159 -161 .
[2] Luo Feifei, Jian Miaofu. Preparation of fluorine doped TiO2 responded to visible light and its photocatalytic activity[J]. New Chemical Materials, 2018, 46(4): 144 -147 .
[3] Huang Jianping, Dai Zilin, Zhu Huaijun, Kong Zhenxing, Wu Haiying, Yang Rui. Study on curing of phenyl silicone resin with high refractive index[J]. New Chemical Materials, 2018, 46(7): 78 -80 .
[4] Zhou Yunbin, Li Minna, Wu Qiong, Huang Zheng, Zhou Lincheng. Application of magnetic metal-organic frameworks material in the separation and detection of environmental pollutant[J]. New Chemical Materials, 2018, 46(9): 213 -216 .
[5] Zhong Honghe, Chen Youming, Guo Yuanjun. Influence of pyrolysis temperature on carbon-based film prepared by ionic liquid precursor[J]. New Chemical Materials, 2018, 46(11): 165 -168 .
[6] Meng Shenghao, Yu Weibo, Liu Hongbo, Li Chen, Du Shiguo. Research progress on the matrix/filler interface of composite solid propellant[J]. New Chemical Materials, 2019, 47(1): 28 -32 .
[7] Shen Yiding, He Yu, Wang Haihua, Yang Jian, Fei Guiqiang, Yang Xiaofang. Influence of crosslinking agent on property of polysiloxane/acrylate emulsion[J]. New Chemical Materials, 2019, 47(1): 181 -185 .
[8] Zhang Jin, Jiang Tingting, Cai Junyi. Study on synthesis and photocatalysis of Ce-doped ZnO[J]. New Chemical Materials, 2019, 47(1): 252 -254 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn