Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (11): 52-57    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
质子交换膜燃料电池双极板材料研究进展
赵秋萍1, 牟志星1,2, 张斌2*, 郭军红1, 杨柳1
1.兰州理工大学石油化工学院,兰州730050;
2.中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州730000
Research progress of bipolar plate material for proton exchange membrane fuel cell
Zhao Qiuping1, Mu Zhixing1,2, Zhang Bin2, Guo Junhong1, Yang Liu1
1.College of Petrochemical Technology,Lanzhou University of Technology,Lanzhou 730050;
2.State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000
下载:  PDF (1185KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 质子交换膜燃料电池具有高效环保、使用寿命长、操作温度低等特点,发展前景广阔。双极板作为质子交换膜燃料电池的核心部件,对其总体性能、使用寿命影响巨大,因此制备高效率、低成本的双极板对推进其商业化应用具有重要意义。综述了质子交换膜燃料电池双极板材料及其表面改性的研究进展,并展望了这些材料的未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵秋萍
牟志星
张斌
郭军红
杨柳
关键词:  燃料电池  质子交换膜  双极板  表面改性    
Abstract: Proton exchange membrane fuel cell has the characteristics of high efficiency,environmental protection,long life and low operating temperature.Bipolar plate,as its core component,has great influence on its overall performance and life.The preparation of bipolar plates with high efficiency and low cost is very important for commercialization.The research progress of bipolar plate materials and surface modification of proton exchange membrane fuel cell were reviewed,and prospected the future development trend of these materials.
Key words:  fuel cell    proton exchange membrane    bipolar plate    surface modification
收稿日期:  2018-05-31                出版日期:  2019-11-20      发布日期:  2019-12-04      期的出版日期:  2019-11-20
基金资助: 中国科学院青年创新促进会(2017459);兰州理工大学中青年教师出国(境)交流项目
通讯作者:  张斌(1982-),男,博士,研究员,硕士研究生导师,从事低摩擦与固体超滑、等离子镀膜技术与装备研究工作。   
作者简介:  赵秋萍(1978-),女,博士,副教授,硕士研究生导师,从事化工新能源材料研究工作。
引用本文:    
赵秋萍, 牟志星, 张斌, 郭军红, 杨柳. 质子交换膜燃料电池双极板材料研究进展[J]. 化工新型材料, 2019, 47(11): 52-57.
Zhao Qiuping, Mu Zhixing, Zhang Bin, Guo Junhong, Yang Liu. Research progress of bipolar plate material for proton exchange membrane fuel cell. New Chemical Materials, 2019, 47(11): 52-57.
链接本文:  
https://www.hgxx.org/CN/  或          https://www.hgxx.org/CN/Y2019/V47/I11/52
[1] Taherian R.A review of composite and metallic bipolar plates in proton exchange membrane fuel cell:materials,fabrication,and material selection[J].Journal of Power Sources,2014,265:370-390.
[2] Miller M,Bazylak A.A review of polymer electrolyte membrane fuel cell stack testing[J].Journal of Power Sources,2011,196(2):601-613.
[3] Silva R F,Franchi D,Leone A,et al.Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells[J].Electrochimica Acta,2006,51(17):3592-3598.
[4] Taherian R,Nasr M.Performance and material selection of nanocomposite bipolar plate in proton exchange membrane fuel cells[J].International Journal of Energy Research,2014,38(1):94-105.
[5] Wlodarczyk R.Carbon based materials for bipolar plates for low-temperatures PEM fuel cells-a review[J].Functional Materials Letters,2018,12(2):1930001.
[6] Emanuelson R C,Luoma W L,Taylor W A.Separator plate for electrochemical cells:US,4301222[P].1981-11-17.
[7] Huang J,Baird D G,Mcgrath J E.Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials[J].Journal of Power Sources,2005(150):110-119.
[8] 王静.碳微球基双极板复合材料的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2017.
[9] 王明华,曹广益,朱新坚,等.一种浸渍燃料电池用石墨双极板的新方法[J].电源技术,2003,27(6):492-493.
[10] Guo N,Leu M C.Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering[J].International Journal of Hydrogen Energy,2012,37(4):3558-3566.
[11] Mathur R B,Dhakate S R,Gupta D K,et al.Effect of different carbon fillers on the properties of graphite composite bipolar plate[J].Journal of Materials Processing Technology,2008,203(1/2/3):184-192.
[12] Huang K P,Lai W H.Effects of anodic gas conditions on performance and resistance of a PBI/H3PO4 proton exchange membrane fuel cell with metallic bipolar plates[J].International Journal of Hydrogen Energy,2017,42(39):24960-24967.
[13] Baik K D,Seo I S.Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells[J].Applied Energy,2018,212:333-339.
[14] Gutiérrez A G G,Sebastian P J,Cacho L M,et al.Surface modification of aluminum alloy 6061 for bipolar plate application:adhesion characteristics and corrosion resistance[J].Int J Electrochem Sci,2018,13:3958-3969.
[15] Lyons K S,Gould B D.Lightweight titanium metal bipolar plates for PEM fuel cells[C]//Materials Science Forum.Switzerland:Trans Tech Publications,2017:613-618.
[16] Asri N F,Husaini T,Sulong A B,et al.Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC:a review[J].International Journal of Hydrogen Energy,2017,42(14):9135-9148.
[17] Yao K,Adams D L,Hao A,et al.Highly conductive and strong graphite-phenolic resin composite for bipolar plate applications[J].Energy & Fuels,2017,31(12):14320-14331.
[18] Yao K,Adams D L,Hao A,et al.Highly conductive,strong,thin and lightweight graphite-phenolic resin composite for bipolar plates in proton exchange membrane fuel cells[J].ECS Transactions,2017,77(11):1303-1324.
[19] Kang K,Park S,Jo A,et al.Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites[J].International Journal of Hydrogen Energy,2017,42(3):1691-1697.
[20] Lee D,Choe J,Nam S,et al.Development of non-woven carbon felt composite bipolar plates using the soft layer method[J].Composite Structures,2017,160:976-982.
[21] Lee D,Lim J W.Cathode/anode integrated composite bipolar plate for high-temperature PEMFC[J].Composite Structures,2017,167:144-151.
[22] Raunija T S K,Gautam R K,Sharma S C,et al.Ultra-thin carbon/silicon carbide composite bipolar plate for advanced fuel cells[J].Material Science & Engineering Technology,2018,49(1):12-20.
[23] 杨超,王东哲.质子交换膜燃料电池用金属双极板表面改性的研究进展[J].材料导报,2014,28(21):84-88.
[24] Wang H,Sweikart M A,Turner J A.Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2003,115(2):243-251.
[25] Zhao Y,Wei L,Yi P,et al.Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs[J].International Journal of Hydrogen Energy,2016,41(2):1142-1150.
[26] Bi F,Li X,Yi P,et al.Characteristics of amorphous carbon films to resist high potential impact in PEMFCs bipolar plates for automotive application[J].International Journal of Hydrogen Energy,2017,42(20):14279-14289.
[27] Wu Mingge,Lu Congda,Tan Dapeng,et al.Effects of metal buffer layer for amorphous carbon film of 304 stainless steel bipolar plate[J].Thin Solid Films,2016,616:507-514.
[28] Wu Mingge,Lu Congda,Hong Tao,et al.Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell[J].Surface and Coatings Technology,2016,307:374-381.
[29] Chen P,Fang F,Zhang Z,et al.Self-assembled graphene film to enable highly conductive and corrosion resistant aluminum bipolar plates in fuel cells[J].International Journal of Hydrogen Energy,2017,42(17):12593-12600.
[30] Wang S,Hou M,Zhao Q,et al.Ti/(Ti,Cr) N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells[J].Journal of Energy Chemistry,2017,26(1):168-174.
[31] Jin J,Zheng D,Liu H.The corrosion behavior and mechanical properties of CrN/NiP multilayer coated mild steel as bipolar plates for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2017,42(48):28883-28897.
[32] Lee D,Lee E,Yoon J,et al.Electrophoretic deposition of titanium nitride onto 316 stainless steel as a bipolar plate for fuel cell application[J].ECS Transactions,2017,80(10):851-857.
[33] Mendizabal L,Oedegaard A,Kongstein O E,et al.TaNx coatings deposited by HPPMS on SS316L bipolar plates for polymer electrolyte membrane fuel cells:correlation between corrosion current,contact resistance and barrier oxide film formation[J].International Journal of Hydrogen Energy,2017,42(5):3259-3270.
[34] Mani S P,Rajendran N.Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells[J].Energy,2017,133:1050-1062.
[35] Li P,Ding X,Yang Z,et al.Electrochemical synthesis and characterization of polyaniline-coated PEMFC metal bipolar plates with improved corrosion resistance[J].Ionics,2018,24(4):1129-1137.
[36] Zhang H,Yuan J,Zhu M.Preparation and characterization of TiN-SBR coating on metallic bipolar plates for polymer electrolyte membrane fuel cell[J].Journal of New Materials for Electrochemical Systems,2017,20(4):169-173.
[37] Tsai S Y,Lin C H,Jian Y J,et al.The fabrication and characteristics of electroless nickel and immersion Au-polytetrafluoroethylene composite coating on aluminum alloy 5052 as bipolar plate[J].Surface and Coatings Technology,2017,313:151-157.
[38] Lin C H,Lee J R,Teng P J,et al.A hydrophobic surface based on a Ni-P-PTFE coating on a metallic bipolar plate[J].Int J Electrochem Sci,2018,13:3147-3160.
[39] Gao Pingping,Xie Zhiyong,Chun Ouyang,et al.Electrochemical characteristics and interfacial contact resistance of Ni-P/TiN/PTFE coatings on Ti bipolar plates[J].Journal of Solid State Electrochemistry,2018,7(22):1971-1981.
[1] 麻春英. 船舶防污方法研究进展[J]. 化工新型材料, 2019, 47(7): 31-34.
[2] 顾士庆, 王兰, 王传义. 3-氨丙基三乙氧基硅烷改性蛭石的制备及其对Pb(Ⅱ)的选择性吸附研究[J]. 化工新型材料, 2019, 47(7): 271-274.
[3] 翟月, 徐海萍, 秦艳丽, 代秀娟, 徐世豪, 杨丹丹. 铌、钴掺杂BaTiO3及表面改性对BaTiO3/PVDF复合材料介电性能的影响[J]. 化工新型材料, 2019, 47(6): 59-62.
[4] 王莎, 詹晓涵, 郭文显, 陈妹琼, 张敏, 程发良. 基于生物质制备活化三维多孔碳及其在微生物燃料电池中的应用[J]. 化工新型材料, 2019, 47(6): 219-222.
[5] 孙晚莹, 伍海明, 徐志伟. 聚丙烯腈纳米纤维正渗透支撑层的表面改性研究[J]. 化工新型材料, 2019, 47(5): 104-108.
[6] 冒俊霞,王彦,胡祖明,于俊荣,诸静. 巯基改性碳纳米管的制备与表征[J]. 化工新型材料, 2019, 47(3): 88-93.
[7] 李鹏,马晓晓,赵理栋. 活性炭纤维的表面改性及其电化学性能研究[J]. 化工新型材料, 2019, 47(3): 143-148.
[8] 贾双珠, 李会勇, 李长安, 解田, 周静. 质子交换膜燃料电池关键材料的研究现状与进展[J]. 化工新型材料, 2019, 47(2): 6-10.
[9] 杨子凤, 焦芮, 张万里, 牟鹏, 李安. 燃料电池阴极氧还原非铂类催化剂研究进展[J]. 化工新型材料, 2019, 47(11): 227-231.
[10] 韩景新, 朱照琪, 孙寒雪, 张政, 李安. 钙钛矿型金属氧化物的制备及其在燃料电池中的应用研究进展[J]. 化工新型材料, 2019, 47(11): 58-61.
[11] 耿世伟, 曹钰, 罗康碧, 李沪萍, 苏毅, 梅毅. 硫酸钙晶须的表面改性研究现状[J]. 化工新型材料, 2019, 47(10): 224-227.
[12] 杨森林, 王洪涛, 盛良全, 苗慧. Sn0.85Ga0.15P2O7/聚苯醚复合电解质的中温电性能探索[J]. 化工新型材料, 2018, 46(9): 195-197.
[13] 赵然, 高欣宝, 鲁彦玲, 杜风贞, 张力, 刘大志. 反应温度对铝镁合金粉表面硅烷膜形成及性能影响的研究[J]. 化工新型材料, 2018, 46(9): 148-152.
[14] 赵思伟, 钱家盛, 苗继斌, 夏茹, 陈鹏, 杨斌. 氢氧化物阻燃剂的改性及其对乙丙橡胶/苯基硅橡胶共混胶性能影响研究[J]. 化工新型材料, 2018, 46(8): 123-126.
[15] 王晓晓, 彭浩凯, 张晓慧, 罗贵明, 李婷婷, 王煦怡, 吴利伟, 姜茜, 林佳弘. 表面处理对芳纶纤维物理和机械性能的影响[J]. 化工新型材料, 2018, 46(8): 67-70.
[1] Li Chunjing, Yang Ruixia, Ma Hao, Jin Huijiao, Shi Xiaodong, Ma Wenjing. Preparation of CH3NH3PbI2Br light absorber-layer thin film[J]. New Chemical Materials, 2018, 46(2): 155 -159 .
[2] Qiu Zhiwen, Sun Xiaogang, Pang Zhipeng, Liu Zhenhong, Chen Long, Cai Manyuan. Study on EMI shielding performance of conductive paper doped with carbon nanotube and rare earth oxide[J]. New Chemical Materials, 2018, 46(3): 75 -79 .
[3] Su Wei, Ran Meng, Zhang Ai, Sun Yan. Preparation of sulfur-doped microporous carbon and its adsorption property[J]. New Chemical Materials, 2018, 46(4): 161 -164 .
[4] Bao Huashan, Wang Erjing, Song Chengjie, Wang Shimin. Research progress of thermally activated delayed fluorescence emitter and device based on small organic molecule[J]. New Chemical Materials, 2018, 46(5): 7 -10 .
[5] Wang Yufei, Zheng Liping, Yao Jianhua, Li Jingjing. Novel progress of fluorofullerene applied in electronic material and device[J]. New Chemical Materials, 2018, 46(7): 5 -8 .
[6] Su Yan, Zhang Qiang, Wang Bei, Deng Wei, Liang Yingchun, Yang Chaolong, Li Youbing. Preparation of PVA red-light film and research on its property[J]. New Chemical Materials, 2018, 46(9): 77 -79 .
[7] Geng Siyao, Wang Jie, Yao Bolong, Wang Likui. Synthesis and property of UV-curable fluorine-containing hyperbranched polyurethane[J]. New Chemical Materials, 2019, 47(1): 100 -104 .
[8] Shi Suyu, Ren Jiahua, Wang Lina, Xie Xiaokai, Xin Changzheng. Preparation and characterization of CS anion-exchange membrane modified by TPU conductive nonwoven[J]. New Chemical Materials, 2019, 47(2): 136 -139 .
[9] Wang Yuanhang, Zhang Naien, Guo Xiaorong, Yan Hong. Progress of intumescent flame retardant coating on material surface[J]. New Chemical Materials, 2019, 47(6): 39 -43 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn