Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (11): 1-5    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
超疏水材料防冰研究进展
彭华乔, 李林, 夏祖西, 苏正良
中国民航局第二研究所,成都610041
Research progress in anti-ice performance of superhydrophobic material
Peng Huaqiao, Li Lin, Xia Zuxi, Su Zhengliang
The Second Research Institute of CAAC,Chengdu 610041
下载:  PDF (1191KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在结冰条件下,除去飞机表面的冰、霜、雪等污染物,是确保航空安全的基础。传统方法存在能耗大、效率低、环境污染等问题,其应用受到一定的限制。启示于自然界“荷叶效应”的超疏水材料具有微纳米结构和低表面能特性,其在飞机除防冰领域有着广阔的应用前景。综述了超疏水材料防冰研究进展,包括表面疏水、减小冰附着力和提升防冰时间等。超疏水材料要在飞机上应用,除了要构建特殊的微纳米结构和低表面能特性外,还要满足飞机涂料的适航性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭华乔
李林
夏祖西
苏正良
关键词:  飞机  超疏水  防冰  冰附着力    
Abstract: In order to ensure the civil aviation safety,the contaminations on the surface of aircraft including ice,frost and snow shall be removed under the freezing conditions.There are some disadvantages such as high energy consumption,ineffectiveness,environmental pollution in traditional deicing/anti-icng method.Based on the ‘lotus effect’,superhydrophobic materials with micro-nano structure and low surface energy have wide applications.The latest international and domestic research progresses in anti-ice performance of superhydrophobic materials were summarized,including hydrophobic,low ice adhesion and high holdover time.Not only construction of the special micro-nano structure and low surface energy,but also satisfaction of airworthiness for aircraft coatings if the superhydrophobic materials will be used in civil aviation in the future.
Key words:  aircraft    superhydrophobicity    anti-icing    ice adhesion force
收稿日期:  2018-09-05                出版日期:  2019-11-20      发布日期:  2019-12-04      期的出版日期:  2019-11-20
基金资助: 国家自然科学基金委员会-中国民用航空局民航联合研究基金(U1833202)
作者简介:  彭华乔(1978-),男,博士,研究员,主要研究方向为航空化学。
引用本文:    
彭华乔, 李林, 夏祖西, 苏正良. 超疏水材料防冰研究进展[J]. 化工新型材料, 2019, 47(11): 1-5.
Peng Huaqiao, Li Lin, Xia Zuxi, Su Zhengliang. Research progress in anti-ice performance of superhydrophobic material. New Chemical Materials, 2019, 47(11): 1-5.
链接本文:  
https://www.hgxx.org/CN/  或          https://www.hgxx.org/CN/Y2019/V47/I11/1
[1] 刘天庆,孙玮,孙相彧,等.超疏水表面上冷凝液滴发生弹跳的机制与条件分析[J].物理化学学报,2012,28(5):1206-1212.
[2] Jafari R,Menini R,Farzaneh M.Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings[J].Applied Surface Science,2010,257:1540-1543.
[3] Wu Yanpeng,Zhang Chaoying.Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface[J].Applied Thermal Engineering,2013,58:664-669.
[4] Antonini C,Innocenti M,Horn T,et al.Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J].Cold Regions Science and Technology,2011,67(1):58-67.
[5] Zhang Rui,Hao Pengfei,Zhang Xiwen,et al.Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J].International Journal of Heat and Mass Transfer,2018,122:395-402.
[6] 高英力,代凯明,李学坤,等.超疏水沥青混凝土抗凝冰性能及评价[J].材料导报,2017,31(12):63-68.
[7] 吴亚平,李辛庚,米春旭,等.输电线路超疏水防覆冰涂层研究进展[J].表面技术,2018,47(1):51-59.
[8] Vaibhav B,Lidiya M,Benjamin H,et al.Predictive model for ice formation on superhydrophobic surfaces[J].Langmuir,2011,27:14143-14150.
[9] Wang Lei,Gong Qihua,Zhan Shihui,et al.Robust anti-icing performance of a flexible superhydrophobic surface[J].Advanced Materials,2016,28(35):7729-7735.
[10] 贾冬梅,李龙刚,李瑜.超疏水涂层表面粗糙结构对防覆冰性能的影响[J].化学通报,2015,78(6):483-488.
[11] Shen Yizhou,Wang Guanyu,Zhu Chunling,et al.Petal shaped nanostructures planted on array micro-patterns for superhydrophobicity and anti-icing applications[J].Surface & Coatings Technology,2017,319:286-293.
[12] Hu Jianlin,Xu Ke,Wu Yao,et al.The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface[J].Applied Surface Science,2014,317:534-544.
[13] Nikolay P,Jagannath C,Georgi S,et al.Anti-icing superhydrophobic surfaces based on core-shell fossil particles[J].Advanced Materials Interfaces,2015,2(11):1500124.
[14] Yuan Zhiqing,Bin Jiping,Wang Xian,et al.Preparation and anti-icing property of a lotus-leaf-like superhydrophobic low-density polyethylene coating with low sliding angle[J].Polymer Engineering & Science,2012,52(11):2310-2315.
[15] Farhadi S,Farzaneh M,Kulinich S A.Anti-icing performance of superhydrophobic surfaces[J].Applied Surface Science,2011,257:6264-6269.
[16] Prasad G,Chakradhar R P S,Parthasarathi B,et al.Transparent hydrophobic and superhydrophobic coatings fabricated using polyamide 12-SiO2 nanocomposite[J].Surface and Interface Analysis,2016,49(5):427-433.
[17] Jiang Cheng,Zhang Yaoming,Wang Qihua,et al.Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence[J].Journal of Applied Polymer Science,2013,129:2959-2965.
[18] Zhou Xin,Kong Junhua,Sun Jiaotong et al.Stable superhydrophobic porous coatings from hybrid ABC triblock copolymers and their anticorrosive performance[J].ACS Applied Materials & Interfaces,2017,9(35):30056-30063.
[19] 晏忠钠,车彦慧,冯利邦,等.超疏水铝合金表面的防覆冰和防黏附行为[J].材料工程,2015,43(9):25-29.
[20] Wang Yanfen,Li Benxia,Liu Tongxuan et al.Controllable fabrication of superhydrophobic TiO2 coating with improved transparency and thermostability[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,441:298-305.
[21] Jain R,Pitchumani R.Facile fabrication of durable copper-based superhydrophobic surfaces via electrodeposition[J].Langmuir,2018,34(10):3159-3169.
[22] Zhang Fan,Qian Hongchang,Wang Luntao et al.Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying[J].Surface and Coatings Technology,2018,341:15-23.
[23] Rajiv S,Kumaran S,Sathish M.Fabrication of robust superhydrophobic coatings using PTFE-MWCNT nanocomposite:supercritical fluid processing[J].Surface and Interface Analysis,2018,50:464-470.
[24] Thanh-binh N,Seungchul P,Hyuneui L.Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces[J].Applied Surface Science,2018,435:585-591.
[25] Srinivas B S,Vitaliy K,Jurgen R,et al.Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions[J].ACS Applied Materials & Interfaces,2016,8(20):12583-12587.
[26] Alexander D,Yong H,Adam S,et al.Superhydrophobic nanocomposite surface topography and ice adhesion[J].ACS Applied Materials & Interfaces,2014,6(12):9272-9279.
[27] 仇伟,刘见祥,曾舒,等.超疏水涂料的制备及其防覆冰性能[J].表面技术,2012,41(6):108-110.
[28] Brassard J D,Laforte J L,Blackburn C,et al.Silicone based superhydrophobic coating efficient to reduce ice adhesion and accumulation on aluminum under offshore arctic conditions[J].Ocean Engineering,2017,144:135-141.
[29] Bharathidasan T,Kumar S V,Bobji M S,et al.Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic,hydrophobic and superhydrophobic surfaces[J].Applied Surface Science,2014,314:241-250.
[30] Zheng Shunli,Li Cheng,Fu Qitao,et al.Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant,self-cleaning,and anti-icing applications[J].Materials and Design,2016,93:261-270.
[31] Brassard J D,Sarkar D K,Perron J,et al.Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion[J].Journal of Colloid & Interface Science,2015,447:240-247.
[32] Yeong H Y,Mool C G.Hot embossed micro-textured thin superhydrophobic teflon FEP sheets for low ice adhesion[J].Surface & Coatings Technology,2017,313:17-23.
[33] Ehsan R,Ali R,Ali D,et al.Shape evolution of water and saline droplets during icing/melting cycles on superhydrophobic surface[J].Surface & Coatings Technology,2018,333:201-209.
[34] 武卫东,王菲菲,申瑞,等.不同基底温度下铝基超疏水表面的抗结冰性能实验[J].制冷学报,2017,38(3):82-88.
[35] 张友法,吴洁,余新泉,等.可控阵列微纳结构超疏水铜表面冰霜传质特性[J].物理化学学报,2014,30(10):1970-1978.
[36] 徐文骥,宋金龙,孙晶,等.铝基体超疏水表面的抗结冰结霜效果分析[J].低温工程,2010(6):11-15.
[37] 周艳艳,于志家.铝基超疏水表面抗结霜特性研究[J].高校化学工程学报,2012,26(6):929-933.
[38] Liao Ruijin,Zuo Zhiping,Guo Chao,et al.Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property[J].Applied Surface Science,2014,317:701-709.
[39] Shen Yizhou,Wang Guanyu,Tao Jie,et al.Anti-icing performance of superhydrophobic texture surfaces depending on reference environments[J].Advanced Materials Interfaces,2017,4(22):1700836.
[40] Shen Yizhou,Tao Jie,Tao Haijun,et al.Anti-icing potential of superhydrophobic Ti6Al4V surfaces:ice nucleation and growth[J].Langmuir,2015,31(39):10799-10806.
[41] 季银炼,张钧波.结霜前期纳米结构超疏水表面的凝结-冻结特性[J].中国表面工程,2017,30(6):18-25.
[42] Liu Xiaolin,Chen Huawei,Kou Weipeng,et al.Robust anti-icing coatings via enhanced superhydrophobicity on fiberglass cloth[J].Cold Regions Science and Technology,2017,138:18-23.
[43] 丁云飞,伍彬,吴会军.柱状微结构超疏水表面制备及其结霜性能研究[J].表面技术,2015,44(1):106-111.
[44] 汪峰,梁彩华,张小松.超疏水翅片表面的抑霜机理和融霜特性[J].工程热物理学报,2016,37(5):1066-1070.
[45] 汪峰,梁彩华,张友法,等.结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响[J].东南大学学报(自然科学版),2016,46(4):757-762.
[46] Wang Guanyu,Shen Yizhou,Tao Jie,et al.Facilely constructing micro-nanostructure superhydrophobic aluminum surface with robust ice-phobicity and corrosion resistance[J].Surface and Coatings Technology,2017,329:224-231.
[47] Zhang Wenwen,Wang Shanlin,Xiao Zhen,et al.Frosting behavior of superhydrophobic nanoarrays under ultralow temperature[J].Langmuir,2017,33(36):8891-8898.
[48] Pan Sai,Wang Nan,Xiong Dangsheng,et al.Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion[J].Applied Surface Science,2016,389:547-553.
[49] Liu Yan,Li Xinlin,Yan Yuying,et al.Anti-icing performance of superhydrophobic aluminum alloy surface and its rebounding mechanism of droplet under super-cold conditions[J].Surface & Coatings Technology,2017,331:7-14.
[50] Kim J,Jeon J,Kim D R,et al.Quantitative analysis of anti-freezing characteristics of superhydrophobic surfaces according to initial ice nuclei formation time and freezing propagation velocity[J].International Journal of Heat and Mass Transfer,2018,126:109-117.
[1] 余春浩. 超疏水表面结构对冷凝结露生长现象影响的研究[J]. 化工新型材料, 2019, 47(9): 187-190.
[2] 赵海谦, 董明, 王忠华, 刘立君, 刘晓燕. 定向碳纳米管阵列应用的研究进展[J]. 化工新型材料, 2019, 47(8): 13-17.
[3] 杨可成, 徐丽慧, 孟云, 盛宇, 王黎明. 耐久性超疏水表面的研究进展[J]. 化工新型材料, 2019, 47(7): 232-236.
[4] 张雪梅, 王航, 王广, 高云艳, 付峰, 高晓明, 牛凤兴. 低成本超疏水棉布的制备及其应用于油水混合物分离的研究[J]. 化工新型材料, 2019, 47(5): 260-263.
[5] 顾晓茵, 徐丽慧, 张旋宇, 张怡蓓, 寿铭洋, 宋俊, 周思敏. 基于SiO2气凝胶的超疏水功能棉织物的制备及性能研究[J]. 化工新型材料, 2019, 47(2): 260-267.
[6] 殷允杰, 王腾飞, 宋伟华, 赵涛, 王潮霞. UV光固化型功能溶胶改性棉织物性能研究[J]. 化工新型材料, 2019, 47(2): 211-214.
[7] 胡建平, 方针, 陆佳政, 金灵华. 一种基于纳米CaCO3的绿色、简便制备超疏水涂层的方法[J]. 化工新型材料, 2019, 47(11): 260-262.
[8] 陈凯, 王强, 孙婷, 游敏, 夏祖西. 化学刻蚀对超疏水表面性能的影响研究[J]. 化工新型材料, 2018, 46(6): 206-209.
[9] 杨国领, 高大海, 刘鹏飞, 贾梦秋. 微纳分级结构ZnO-氟碳树脂超疏水表面的制备研究[J]. 化工新型材料, 2018, 46(6): 65-69.
[10] 黄艳芬, 胡未能, 石其坤, 闫自豪, 田长丙, 刘巍, 吕早生. 基于聚二甲基硅氧烷和纳米CaCO3的超疏水自清洁涂层的制备[J]. 化工新型材料, 2018, 46(5): 242-244.
[11] 郑君红, 张丹, 康怀萍, 徐丹, 余光华, 龙柱. 棉织物的超疏水整理及其性能表征[J]. 化工新型材料, 2018, 46(4): 205-208.
[12] 赵明远, 王煦漫, 张彩宁, 段凯迪. 仿蝶翅超疏水涂层的制备研究[J]. 化工新型材料, 2018, 46(3): 127-129.
[13] 叶李薇,张亚博,彭华乔,苏正良. 聚硫醚密封剂研究进展[J]. 化工新型材料, 2017, 45(9): 201-203.
[1] Duan Lingyao, Hou Chaoyi, Chen Chuang, Jia Qiong, Hou Zhenyu. Hydrothermal synthesis and the gas sensing property of ZnO[J]. New Chemical Materials, 2017, 45(9): 184 -185 .
[2] Zhang Shumin, Ren Xuehong, Li Qingfang. Study on antibacterial finishing of PP nonwoven fabric by N-halamine copolymer[J]. New Chemical Materials, 2018, 46(4): 201 -204 .
[3] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[4] Zhao Zhenghong, Shuai Changgeng, Yang Xue. Experimental and theoretical study on mechanical relaxation of dielectric elastomer[J]. New Chemical Materials, 2018, 46(12): 175 -177 .
[5] Li Yonggang, Feng Pan, Yu Xiaohua, Yu Shuanglin, Xu Yafei, He Xiaocai, Xie Gang. Electrochemical property of graphene with different reducing agent[J]. New Chemical Materials, 2019, 47(1): 92 -95 .
[6] Mai Huangwang, Yang Wei, Lei Kangzhou, Chen Shengzhou. Iron/carbon microsphere synthesized by hydrothermal method and catalysis for oxygen reduction[J]. New Chemical Materials, 2019, 47(2): 154 -156 .
[7] Yuan Weiye, Zhang Xuelai, Hua Weisan, Han Xingchao, Wang Zhangfei. Influence of different ratio of salt and water on the stable super-cooling of sodium acetate solution[J]. New Chemical Materials, 2019, 47(4): 158 -161 .
[8] Yu Yongjian, Li Ling, Duan Xianfa. Application of hexachlorocyclotriphosphazene derivative in flame retardant of epoxy resin[J]. New Chemical Materials, 2019, 47(4): 230 -234 .
[9] Zhang Huanzhi, Cui Weiwei, Xia Yongpeng, Xu Fen, Sun Lixian. Research progress in preparation and thermal performance of composite PCMs[J]. New Chemical Materials, 2019, 47(6): 35 -38 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn