Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2023, Vol. 51 Issue (5): 270-276    DOI: 10.19817/j.cnki.issn1006-3536.2023.05.050
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
g-C3N4的微观调控在环境治理中的应用
谭栋玉1, 黄斐1, 张武1,2,3*
1.天津科技大学海洋与环境学院,天津300457;
2.天津市海洋资源与化学重点实验室,天津300457;
3.天津市海洋环境保护与修复技术工程中心,天津300457
Application of micro-control of g-C3N4 in environmental governance
Tan Dongyu1, Huang Fei1, Zhang Wu1,2,3
1. College of Marine and Environmental Sciences,Tianjin University of Science & Technology, Tianjin 300457;
2. Tianjin Key Laboratory of Marine Resources and Chemistry,Tianjin 300457;
3. Tianjin Marine Environmental Protection and Remediation Technology Engineering Center, Tianjin 300457
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)是一种无金属光催化剂,具有环境友好、良好的热稳定性和化学稳定性,以及优异的光电化学性质等优点。但另一方面,其比表面积低、活性位点少、光生电子-空穴对复合速度快等缺陷限制了其光催化应用。综述了g-C3N4的改性方法,包括微观纳米化增强响应速度及增加活性位点,复合半导体增加载流子传输速率,构筑异质结提升电子-空穴分离效率等。经改性处理后,g-C3N4降解污染物的效率大大增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭栋玉
黄斐
张武
关键词:  石墨相氮化碳  2D/2D材料  形貌调控  微观纳米化    
Abstract: g-C3N4 is a kind of non-metallic photocatalyst with environmental friendliness,good thermal and chemical stability,excellent optical and photoelectrochemical characteristics.However,the photocatalytic performance of g-C3N4 is limited by its low specific surface area,less active sites,and fast recombination speed of photogenerated electrons and holes.In this paper,the methods for improving the catalytic performance of g-C3N4 were reviewed,including microscopic nanosizing to enhance the response speed and increase the active sites,composite semiconductor to increase the carrier transport rate,and heterojunction to improve the efficiency of electron-hole separation.After g-C3N4 modification treatment,the degradation efficiency of g-C3N4 for pollutants was greatly increased.
Key words:  g-C3N4    2D/2D material    morphology control    micronanocrystallization
收稿日期:  2021-12-08      修回日期:  2023-02-16           出版日期:  2023-05-20      发布日期:  2023-05-31     
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51503148);天津市应用基础与前沿技术研究计划(15JCQNJC09000);天津市普通高等学校本科教学质量与教学改革研究计划(B201005705)
通讯作者:  张武(1980-),男,讲师,主要研究方向为环境功能材料,E-mail:zhangwu@tust.edu.cn。   
作者简介:  谭栋玉(1996-),女,硕士研究生,主要研究方向为污水处理及水资源利用,E-mail:1641350235@qq.com。
引用本文:    
谭栋玉, 黄斐, 张武. g-C3N4的微观调控在环境治理中的应用[J]. 化工新型材料, 2023, 51(5): 270-276.
Tan Dongyu, Huang Fei, Zhang Wu. Application of micro-control of g-C3N4 in environmental governance. New Chemical Materials, 2023, 51(5): 270-276.
链接本文:  
https://www.hgxx.org/CN/10.19817/j.cnki.issn1006-3536.2023.05.050  或          https://www.hgxx.org/CN/Y2023/V51/I5/270
[1] Liang J L,Wei C,Lin D,et al.Mechanisms for strong adsorption of tetracycline to carbon nanotubes:a comparative study using activated carbon and graphite as adsorbents[J].Environmental Science & Technology,2009,43(7):2322-23277.
[2] Gómez-Pacheco C V,Sánchez-Polo M,Rivera-Utrilla J,et al.Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation[J].Chemical Engineering Journal,2011,178:115-121.
[3] Liu Q Q,Shen J Y,Yang X F,et al.3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics[J].Applied Catalysis B:Environmental,2018,232:562-573.
[4] Zhang X D,Xie X,Wang H,et al.Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J].Journal of the American Chemical Society,2013,135(1):18-21.
[5] Wang X C,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight[J].Nature Materials,2009,8:76-80.
[6] Bai X J,Li W,Zong R L,et al.Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods[J].The Journal of Physical Chemistry C,2013,117(19):9952-9961.
[7] Tong Z W,Yang D,Sun Y Y,et al.Tubular g-C3N4isotype heterojunction:enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer[J].Small,2016,12(30):4093-4101.
[8] Chen X,Jun Y S,Takanabe K,et al.Ordered mesoporous SBA-15 type graphitic carbon nitride:a semiconductor host structure for photocatalytic hydrogen evolution with visible light[J].Chemistry of Materials,2009,21(18):4093-4095.
[9] Sun J H,Zhang J S,Zhang M W,et al.Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J].Nature Communications,2012,3(4):1139.
[10] Zhang J S,Zhang M W,Yang C,et al.Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J].Advanced Materials,2014,26(24):4121-4126.
[11] Niu P,Zhang L L,Liu G,et al.Graphenemmike carbon nitride nanosheets for improved photocatalytic activities[J].Advanced Functional Materials,2012,22(22):4763-4770.
[12] Liang Q H,Li Z,Huang Z H,et al.Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J].Advanced Functional Materials,2016,25(44):6885-6892.
[13] Han Q,Wang B,Gao J,et al.Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J].ACS Nano,2016,10(2):2745-2751.
[14] Zheng Y,Lin L H,Ye X J,et al.Helical graphitic carbon nitrides with photocatalytic and optical activities[J].Angewandte Chemie,2014,53(44):11926-11930.
[15] Tahir M,Cao C B,Butt F K,et al.Tubular graphitic-C3N4:a prospective material for energy storage and green photocatalysis[J].Journal of Materials Chemistry A,2013,1(44):13949-13955.
[16] Wang S P,Li C J,Wang T,et al.Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties[J].Journal of Materials Chemistry A,2014,2(9):2885-2890.
[17] Park S S,Chu S W,Xue C F,et al.Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent[J].Journal of Materials Chemistry,2011,21(29):10801-10807.
[18] Wang Y G,Wang F,Zuo Y H,et al.Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine[J].Materials Letters,2014,136(1):271-273.
[19] Iqbal W,Dong C Y,Xing M Y,et al.Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity[J].Catalysis Science & Technology,2017,7:1726-1734.
[20] Yang P,Zhao J,Wei Q,et al.Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride[J].Nanoscale,2015,7:18887-18890.
[21] Zheng D D,Huang C J,Wang X C,et al.Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis[J].Nanoscale,2015,7:465-470.
[22] Gu Q,Liao Y,Yin L S,et al.Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability[J].Applied Catalysis B:Environmental,2015,165:503-510.
[23] Zhang Y W,Xu J S,Mei J,et al.Strongly interfacial-coupled 2D-2D TiO2/g-C3N4heterostructure for enhanced visible-light induced synthesis and conversion[J].Journal of Hazardous Materials,2020,394:122529.
[24] Ren D D,Shen R C,Jiang Z M,et al.Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions[J].Chinese Journal of Catalysis,2020,41(1):31-40.
[25] Chen J Y,Xiao X Y,Wang Y,et al.Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation[J].Applied Surface Science,2018,467-468:1000-1010.
[26] Kadi M W,Mohamed R M,Ismail A A,et al.Thin-layer g-C3N4nanosheet decoration with MoS2 nanoparticles as a highly efficient photocatalyst in the H2 production reaction[J].Journal of Nanoparticle Research,2020,22(6):156.
[27] Shi W L,Li M Y,Huang X L,et al.Facile synthesis of 2D/2D CO3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light-ScienceDirect[J].Chemical Engineering Journal,2016,382:122960.
[28] Chen W,He Z C,Huang G B,et al.Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution[J].Chemial Engineering Journal,2019,359:244-253.
[29] Fu J W,Xu Q L,Low J X,et al.Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J].Applied catalysis B:Environmental,2019,243:556-565.
[30] Ong W J,Tan L L,Chai S P,et al.Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J].Nano Energy,2015,13:757-770.
[31] Tonda S,Kumar S,Bhardwaj M,et al.g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels[J].ACS Applied Materials & Interfaces,2018,10(3):2667-2678.
[32] Guo F,Shi W L,Li M Y,et al.2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline[J].Separation & Purification Technology,2019,210:608-615.
[33] Ran J R,Guo W W,Wang H L,et al.Metal-free 2D/2D phosphorene/g-C3N4van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production[J].Advanced Materials,2018,30(25):1800128.
[34] Zhu X J,Zhang T M,Sun Z J,et al.Black phosphorus revisited:a missing metal-free elemental photocatalyst for visible light hydrogen evolution[J].Advanced Materials,2017,29(17):1605776.
[35] Zhang Q Z,Huang S Y,Deng J J,et al.Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst:2D/2D Heterostructure for Broadband H2evolution[J].Advanced Functional Materials,2019,29(28):1902486.
[36] Ran J R,Gao G P,Li F T,et al.Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J].Nature Communications,2017,8:13907.
[37] Sun Y L,Jin D,Sun Y,et al.g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution[J].Journal of Materials Chemistry A,2018,6:9124-9131.
[38] Yang C,Tan Q Y,Li Q,et al.2D/2D Ti3C2MXene/g-C3N4nanosheets heterojunction for high efficient CO2 reduction photocatalyst:dual effects of urea[J].Applied Catalysis B:Environmental,2020,268:118738.
[39] Mishra M,Chun D M,et al. α-Fe2O3 as a photocatalytic material:a review[J].Applied Catalysis A General,2015,498:126-141.
[40] Geng Y X,Chen D Y,Li N J,et al.Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide[J].Applied Catalysis B:Environmental,2021,280:119409.
[41] Li F T,Zhao Y,Wang Q,et al.Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl Modification[J].Journal of Hazardous Materials,2015,283:371-381.
[42] Luo S,Ke J,Yuan M Q,et al.CuInS2 quantum dots embedded in Bi2WO6nanoflowers for enhanced visible light photocatalytic removal of contaminants[J].Applied Catalysis B:Environmental,2018,221:215-222.
[43] Jiang D L,Wang T Y,Xu Q,et al.Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline[J].Applied Catalysis B:Environmental,2017,201:617-628.
[44] Qamar M,Elsayed R B,Alhooshani K R,et al.Highly efficient and selective oxidation of aromatic alcohols photocatalyzed by nanoporous hierarchical Pt/Bi2WO6 in organic solvent-free environment[J].ACS Applied Materials&Interfaces,2015,7(2):1257-1269.
[45] Wang J J,Tang L,Zeng G M,et al.Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation[J].Applied Catalysis B:Environmental,2017,209:285-294.
[46] Huang Y H,Wang K,Guo T,et al.Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with High interfacialcharge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction[J].Applied Catalysis B:Environmental,2020,277:119232.
[1] 周杰, 包妍, 朱蓓蓓, 李亚, 管国锋. 石墨相氮化碳量子点的合成及在分析检测中的应用进展[J]. 化工新型材料, 2023, 51(3): 36-44.
[2] 张浩南, 林正宇, 李雪梅, 赵宇, 柴希娟. Ag-P共掺杂石墨相氮化碳及其可见光降解性能研究[J]. 化工新型材料, 2023, 51(1): 221-226.
[3] 严超, 周迅, 籍浩齐, 匡代洪, 杨占金, 杨方源. α-Fe2O3/g-C3N4复合材料的制备及光催化性能[J]. 化工新型材料, 2022, 50(9): 201-205.
[4] 梁家驰, 李昕奇, 左建良, 林璟, 刘自力. 石墨相氮化碳形貌调控及其光催化性能研究[J]. 化工新型材料, 2022, 50(8): 223-228.
[5] 徐宁, 格根海日, 代小, 达胡白乙拉. g-C3N4/TiO2纳米复合纤维的制备及可见光催化性能[J]. 化工新型材料, 2022, 50(5): 94-97.
[6] 高敏, 李思敏, 朱佳. 花球状MoS2/g-C3N4的制备及活化过硫酸盐对孔雀石绿的降解[J]. 化工新型材料, 2022, 50(4): 196-201.
[7] 肖力光, 杨猜霞, 刘哲, 寇红阳. 硅藻土/Bi/g-C3N4复合材料的制备及其可见光催化性能研究[J]. 化工新型材料, 2022, 50(11): 130-135.
[8] 易均辉, 林泽波, 莫惠媚, 刘锐隆, 廖晓莹, 李龙龙. Bi2WO6的形貌调控、改性及其应用研究进展[J]. 化工新型材料, 2021, 49(9): 42-46.
[9] 王勇, 陈桂华. 超导FeSe合金为助剂增强石墨相氮化碳的光催化活性研究[J]. 化工新型材料, 2021, 49(8): 132-135.
[10] 逯亚博, 刘祥萱, 杨玉雪, 李飞, 谢拯. g-C3N4/TiO2纳米棒阵列薄膜的制备及光催化性能研究[J]. 化工新型材料, 2021, 49(8): 202-206.
[11] 秦礼平, 饶邵盛, 高帅, 杨娟. 银-氧化亚铜/壳聚糖/石墨相氮化碳的制备及其光催化抗菌性能[J]. 化工新型材料, 2021, 49(7): 102-106.
[12] 顾明敏, 罗驹华, 孙新凯, 江陈烨, 陈晓雯. 光催化剂g-C3N4/α-Fe2O3/RGO的制备及其可见光催化性能研究[J]. 化工新型材料, 2021, 49(7): 116-121.
[13] 李金鑫, 赵晶, 赵燕, 张育, 孟雪, 晏泓. 类石墨相氮化碳/环氧树脂复合材料提高海洋混凝土结构防腐性能的研究[J]. 化工新型材料, 2021, 49(5): 252-256.
[14] 邓梅, 单柏林, 苗成成, 唐伯明, 杨晓宇, 曹雪娟. 石墨相氮化碳/TiO2型光催化沥青性能及应用研究[J]. 化工新型材料, 2021, 49(4): 224-227.
[15] 慕成龙, 刘晨艳, 崔晓峰, 闫凯. g-C3N4基纳米复合材料的抗菌性能研究进展[J]. 化工新型材料, 2021, 49(11): 63-67.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn