Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2023, Vol. 51 Issue (5): 240-243    DOI: 10.19817/j.cnki.issn1006-3536.2023.05.044
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
三嗪基氮掺杂碳材料的制备及其在超级电容器中的应用研究
程广鸿, 曹小凤, 王利魁*, 刘云, 石刚, 姚伯龙
江南大学化学与材料工程学院合成与生物胶体教育部重点实验室,无锡214122
Preparation and application of triazine-based nitrogen-doped carbon materials for supercapacitors
Cheng Guanghong, Cao Xiaofeng, Wang Likui, Liu Yun, Shi Gang, Yao Bolong
Key Laboratory of Synthesis and Biocolloids of Ministry of Education,School of Chemical and Materials Engineering,Jiangnan University,Wuxi 214122
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 通过三聚氯氰(TCT)与对苯二胺(PPD)反应,成功合成了基于三嗪结构制备的微孔聚合物,然后在 700~1000℃的环境下对微孔材料进行煅烧。结果表明,经900℃碳化的N-CTF-900样品的电化学性能最好,当电流密度为1A/g时,比电容为264.2F/g。经过10000次充放电循环,电容保持率达91.0%,展示出良好的循环稳定性和倍率性能,可作为超级电容器的电极材料。此外,随着碳化温度的升高,样品的碳化程度、电导率、孔隙率和微孔体积均增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程广鸿
曹小凤
王利魁
刘云
石刚
姚伯龙
关键词:  超级电容器  氮掺杂碳材料  电化学性能  三嗪    
Abstract: By the reaction of cyanuric chloride (TCT) with p-phenylenediamine (PPD),a microporous polymer based on triazine structure (N-CTF) was successfully synthesized,and the N-CTF was carbonized at 700~1000℃ subsequently.The results showed that the electrochemical performance of the N-CTF-900 sample carbonized at 900℃ was the best,with a specific capacitance of 264.2F·g-1 at current density of 1A·g-1.After 10000 cycles of charging and discharging,the capacitance retention rate reached 91%.The N-CTF-900 could be used as electrode material for supercapacitors due to its excellent cycling stability and rate performance.In addition,the degree of carbonization,conductivity,porosity and micropore volume of the sample all increased with the increase of carbonization temperature.
Key words:  supercapacitor    nitrogen-doped carbon material    electrochemical performance    triazine
收稿日期:  2021-12-11      修回日期:  2023-02-18           出版日期:  2023-05-20      发布日期:  2023-05-31     
ZTFLH:  O646  
基金资助: 江苏省自然科学基金(BK20130144)
通讯作者:  王利魁(1978-),男,副教授,主要从事胶体自组装、碳材料和二维过渡金属碳氮化物(MXene)材料的制备及其在电化学领域中的应用研究,E-mail:lkwang@jiangnan.edu.cn。   
作者简介:  程广鸿(1997-),男,硕士研究生,主要研究方向为二维过渡金属碳化物MXene材料。
引用本文:    
程广鸿, 曹小凤, 王利魁, 刘云, 石刚, 姚伯龙. 三嗪基氮掺杂碳材料的制备及其在超级电容器中的应用研究[J]. 化工新型材料, 2023, 51(5): 240-243.
Cheng Guanghong, Cao Xiaofeng, Wang Likui, Liu Yun, Shi Gang, Yao Bolong. Preparation and application of triazine-based nitrogen-doped carbon materials for supercapacitors. New Chemical Materials, 2023, 51(5): 240-243.
链接本文:  
https://www.hgxx.org/CN/10.19817/j.cnki.issn1006-3536.2023.05.044  或          https://www.hgxx.org/CN/Y2023/V51/I5/240
[1] Sankarananth S,Karthiga M,Karthikeyan C,et al.A novel battery and super capacitor using IOT to interface renewable energy sources with dual direction and its application[J].Journal of Computational and Theoretical Nanoscience,2018,15(5):1615-1624.
[2] Duan M,Cao X,Zhang Q,et al.Research and application of supercapacitor charging system[J].Open Access Library Journal,2018,05:1-6.
[3] Li F W,Gang Z.Application of advanced energy storage in renewable energy power generation[J].Information Management and Computer Science,2018,1:09-14.
[4] Tian J,Zhang T,Talifu D,et al.Porous carbon materials derived from waste cotton stalk with ultra-high surface area for high performance supercapacitors[J].Materials Research Bulletin,2021,143:111457.
[5] Su X,Jiang S,Zheng X,et al.Hierarchical porous carbon materials from bio waste-mango stone for high-performance supercapacitor electrodes[J].Materials Letters,2018,230:123-127.
[6] Li Q,Mu J,Zhou J,et al.Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode[J].Journal of Electroanalytical Chemistry,2019,832:284-292.
[7] Zhao Z,Das S,Xing G,et al.A 3D organically synthesized porous carbon material for lithium-ion batteries[J].Angewandte Chemie International Edition,2018,57(37):11952-11956.
[8] Liu Y,Chang Z,Yao L,et al.Nitrogen/sulfur dual-doped sponge-like porous carbon materials derived from pomelo peel synthesized at comparatively low temperatures for superior-performance supercapacitors[J].Journal of Electroanalytical Chemistry,2019,847:113111.
[9] Zhang Z,Gao Z,Zhang Y,et al.Hierarchical porous nitrogen-doped graphite from tissue paper as efficient electrode material for symmetric supercapacitor[J].Journal of Power Sources,2021,492:229670.
[10] Jin H,Feng X,Li J,et al.Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance[J].Angewandte Chemie International Edition,2019,58(8):2397-2401.
[11] Cao X,Li Z,Chen H,et al.Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode[J].International Journal of Hydrogen Energy,2021,46(36):18887-18897.
[12] Liu H,Hu H,Wang J,et al.Hierarchical ternary MoO2/MoS2/heteroatom-doped carbon hybrid materials for high-performance lithium-ion storage[J].ChemElectroChem,2016,3(6):922-932.
[13] Liang J,Xiao C,Chen X,et al.Porous γ-Fe2O3 spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials[J].Nanotechnology,2016,27(21):215403.
[14] Zhu H,Yin J,Wang X,et al.Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors[J].Advanced Functional Materials,2013,23(10):1305-1312.
[15] Rangraz Y,Heravi M M,Elhampour A.Recent advances on heteroatom-doped porous carbon/metal materials:fascinating heterogeneous catalysts for organic transformations[J].The Chemical Record,2021,21(8):1985-2073.
[16] Pan Q Y,Jiang S,Li Z,et al.Highly porous single ion conducting membrane via a facile combined “structural self-assembly” and in-situ polymerization process for high performance lithium metal batteries[J].Journal of Membrane Science,2021,636:119601.
[17] Liu B,Sun H,Peng T,et al.3D core-shell poly(aniline-co-pyrrole)/reduced graphene oxide composite for supercapacitor performance[J].Diamond and Related Materials,2021,118:108498.
[18] Liang H X,Sun R R,Song B,et al.Preparation of nitrogen-doped porous carbon material by a hydrothermal-activation two-step method and its high-efficiency adsorption of Cr(Ⅵ)[J].Journal of Hazardous Materials,2020,387:121987.
[19] Liu X,Liu Y,Wang Y,et al.Preparation of porous carbon materials by polyphosphazene as precursor for sorption of U(Ⅵ)[J].Colloid and Interface Science Communications,2021,41:100387.
[20] Rong Y,Wang S,Jia D,et al.Preparation of porous carbon material by carbonizing polyacrylonitrile microspheres[J].Applied Mechanics and Materials,2012,253-255:884-887.
[1] 马鸣, 刘伟, 闫源, 孙刚, 夏鑫. 聚吡咙基柔性碳膜的制备及电化学性能研究[J]. 化工新型材料, 2023, 51(5): 97-101.
[2] 祝晨, 胡劲, 王开军, 张维钧, 段云彪. W18O49的制备及其电化学性能研究[J]. 化工新型材料, 2023, 51(5): 170-175.
[3] 王健恺, 赵宝茹, 黄鑫, 杜小雨, 张永, 马文辉. 生物质碳微球/还原氧化石墨烯水凝胶的制备及其电化学性能研究[J]. 化工新型材料, 2023, 51(5): 255-260.
[4] 张王刚, 康凯, 高乾锐, 卫爱丽. 氯金酸辅助制备核壳结构多孔碳球及其电化学性能[J]. 化工新型材料, 2023, 51(4): 119-125.
[5] 谭徜彬, 何正江, 邱涵, 张金铭, 唐杨, 阳龑. 碳纳米管/聚苯胺柔性自支撑复合电极材料的制备及其电化学性能研究[J]. 化工新型材料, 2023, 51(4): 145-150.
[6] 任重, 祝贺, 雒和明, 张建强. 酚醛泡沫衍生多孔炭的制备及其电化学性能研究[J]. 化工新型材料, 2023, 51(4): 151-157.
[7] 陈垒, 王皓, 张文慧, 洪灿灿, 王点点, 赵金安. Li2S掺杂对富锂锰基材料首次库仑效率的提升效果研究[J]. 化工新型材料, 2023, 51(4): 175-178.
[8] 蔡雪, 林涛, 蔺家成, 魏潇瑶, 殷学风. 纤维素纳米纤丝复合气凝胶的制备与性能研究[J]. 化工新型材料, 2023, 51(4): 191-196.
[9] 项林忆, 文劲松, 胡斌, 殷小春, 何光建. 多孔碳及其复合材料在超级电容器中的研究进展[J]. 化工新型材料, 2023, 51(3): 20-24.
[10] 魏诗诗, 侯顺丽, 周庚, 董思语, 胡娅婷, 王甲泰. 高镍三元材料的掺杂改性研究及展望[J]. 化工新型材料, 2023, 51(3): 58-62.
[11] 皇甫战彪, 郭东方, 梁黎明, 刘雪坤, 梁永福, 程学瑞, 杨坤. α-CoMoO4β-CoMoO4的制备及电化学性能研究[J]. 化工新型材料, 2023, 51(3): 289-293.
[12] 裴勇勇, 魏枫, 高聪, 徐海兵, 陈刚, 陈明达, 祝颖丹. 碳纤维复合材料结构超级电容器的研究及展望[J]. 化工新型材料, 2023, 51(2): 1-5.
[13] 何欣健, 贾金柱, 吴忠辉, 杨雄智, 孙菱浩, 杨小兰, 周俊丽. 石墨烯/MnO2纳米片复合薄膜的制备及其超级电容性能研究[J]. 化工新型材料, 2023, 51(2): 74-80.
[14] 杨芳, 黄浩, 朱佳莹, 董伟, 吴启启, 李宏宇. 炭含量对MoS2/GR复合电极材料电化学性能的影响[J]. 化工新型材料, 2023, 51(2): 135-141.
[15] 张明鉴, 任重, 李希言, 祝贺, 雒和明, 张建强. 三聚氯氰衍生多孔炭的制备及其电化学性能研究[J]. 化工新型材料, 2023, 51(2): 142-148.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn