Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2023, Vol. 51 Issue (5): 7-12    DOI: 10.19817/j.cnki.issn1006-3536.2023.05.002
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
石墨烯基柔性膜材料的制备及应用研究进展
陶思轩1, 杨群1,2*, 谭金洪1, 胡庚昊1
1.上海工程技术大学纺织服装学院,上海201620;
2.上海纺织化学清洁生产工程技术研究中心,上海201620
Research progress on the preparation and application of graphene-based flexible membrane materials
Tao Sixuan1, Yang Qun1,2, Tan Jinhong1, Hu Genhao1
1. School of Textiles and Fashion,Shanghai University of Engineering Science,Shanghai 201620;
2. Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 具有多重优异性能的石墨烯已经成为推动新经济、新业态下的革命性新材料,石墨烯柔性膜材料作为石墨烯基材料的一种重要表现形式,在光伏发电、能源储备、电磁屏蔽、抗菌消毒等领域有着广泛的应用前景,也成为研究的重点。针对目前石墨烯基柔性膜材料的制备方法、应用机理和应用范畴进行综述,并分析当下所面临的主要问题及其发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶思轩
杨群
谭金洪
胡庚昊
关键词:  石墨烯  柔性膜材料  自组装  电磁屏蔽  传感器    
Abstract: Graphene with multiple excellent properties has become a revolutionary new material to promote new economy and new industry.As an important manifestation of graphene-based materials,graphene flexible membrane material has a wide application prospect in photovoltaic power generation,energy storage,electromagnetic shielding,anti-bacterial and other fields,which has also become a research focus.This article reviewed the preparation methods,application mechanism and application scope,and analyzed the main problems faced at present and development prospects.
Key words:  graphene    flexible membrane materials    self-assembly    electromagnetic shielding    sensor
收稿日期:  2022-02-13      修回日期:  2022-12-27           出版日期:  2023-05-20      发布日期:  2023-05-31     
ZTFLH:  TB34  
基金资助: 浙江省自然科学基金青年基金项目(LQ18E030006);上海工程技术大学产学研项目((19)FZ-015)
通讯作者:  杨群(1981-),女,博士,副教授,研究方向为功能与智能材料的设计及应用,E-mail:yangqun@sues.edu.cn。   
作者简介:  陶思轩(1997-),男,硕士研究生,从事石墨烯及其衍生材料的制备及应用研究工作,E-mail:t736402112@163.com。
引用本文:    
陶思轩, 杨群, 谭金洪, 胡庚昊. 石墨烯基柔性膜材料的制备及应用研究进展[J]. 化工新型材料, 2023, 51(5): 7-12.
Tao Sixuan, Yang Qun, Tan Jinhong, Hu Genhao. Research progress on the preparation and application of graphene-based flexible membrane materials. New Chemical Materials, 2023, 51(5): 7-12.
链接本文:  
https://www.hgxx.org/CN/10.19817/j.cnki.issn1006-3536.2023.05.002  或          https://www.hgxx.org/CN/Y2023/V51/I5/7
[1] Aunkor M T H,Mahbubul I M,Saidur R,et al.The green reduction of graphene oxide[J].RSC Advances,2016,6(33):27807-27828.
[2] Torres Alonso E,Rodrigues D P,Khetani M,et al.Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles[J].NPJ Flexible Electronics,2018,2(1):25.
[3] Yu J,Wang M,Xu P,et al.Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber[J].Carbon,2017,119:332-338.
[4] 郑贤宏,胡侨乐,聂文琪,等.纤维状柔性超级电容器的研究进展[J].精细化工,2021,38(12):2393-2403.
[5] Han G,Ma Z,Zhou B,et al.Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J].Journal of Colloid and Interface Science,2021,583:571-578.
[6] Meng F,Lu W,Li Q,et al.Graphene-based fibers:a review[J].Advanced Materials,2015,27(35):5113-5131.
[7] Castro Neto A H,Guinea F,Peres N M R,et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.
[8] Lerf A,He H,Forster M,et al.Structure of graphite oxide revisited[J].Journal of Physical Chemistry B,1998,102:4477-4482.
[9] 吴思达.石墨烯基薄膜的气液界面自组装制备及应用研究[D].天津:天津大学,2014.
[10] Immanuel S,Sivasubramanian R.Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets[J].Materials Science and Engineering:B,2020,262:114705.
[11] Park S,Dikin D A,Nguyen S T,et al.Graphene oxide sheets chemically cross-linked by polyallylamine[J].The Journal of Physical Chemistry C,2009,113(36):15801-15804.
[12] Zheng Y,Yin X,Zhang S.Activity enhancement in photocatalytic reduction of CO2 over nano-ZnO anchored on graphene[J].Water,Air,& Soil Pollution,2018,229(8):262.
[13] De Silva K K H,Huang H H,Joshi R K,et al.Chemical reduction of graphene oxide using green reductants[J].Carbon,2017,119:190-199.
[14] Fang X,Fan Z,Gu Y,et al.A solution processable flexible transparent conductive graphene/PEDOT∶ PSS film fabricated by spin and blade coating[J].Journal of Shanghai Jiaotong University (Science),2018,23(1):106-111.
[15] Kobayashi T,Bando M,Kimura N,et al.Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process[J].Applied Physics Letters,2013,102(2):023112.
[16] Wågberg L,Erlandsson J.The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials[J].Advanced Materials,2021,33(28):2001474.
[17] Velasco-Hernández A,Esparza-Muñoz R A,de Moure-Flores F J,et al.Synthesis and characterization of graphene oxide-TiO2 thin films by sol-gel for photocatalytic applications[J].Materials Science in Semiconductor Processing,2020,114:105082.
[18] Khosravi M,Seyfi J,Saeidi A,et al.Spin-coated polyvinylidene fluoride/graphene nanocomposite thin films with improved β-phase content and electrical conductivity[J].Journal of Materials Science,2020,55(15):6696-6707.
[19] Chamoli P,Das M K,Kar K K.Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film[J].Journal of Physics and Chemistry of Solids,2018,113:17-25.
[20] Lee H J,Song Y S,An T K,et al.Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying[J].Synthetic Metals,2016,221:340-344.
[21] Li X,Cai W,An J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
[22] Xin S,Yang N,Gao F,et al.Free-standing and flexible polypyrrole nanotube/reduced graphene oxide hybrid film with promising thermoelectric performance[J].Materials Chemistry and Physics,2018,212:440-445.
[23] Luo H,Xu C,Wang B,et al.Highly conductive graphene-modified TiO2 hierarchical film electrode for flexible Li-ion battery anode[J].Electrochimica Acta,2019,313:10-19.
[24] Li X,Zhang G,Bai X,et al.Highly conducting graphene sheets and Langmuir-Blodgett films[J].Nature Nanotechnology,2008,3(9):538-542.
[25] Yang T,Yang J,Shi L,et al.Highly flexible transparent conductive graphene/single-walled carbon nanotube nanocomposite films produced by Langmuir-Blodgett assembly[J].RSC Advances,2015,5(30):23650-23657.
[26] Bae S,Kim H,Lee Y,et al.Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnology,2010,5(8):574-578.
[27] Zhu J,Cao Y,He J.Facile fabrication of transparent,broadband photoresponse,self-cleaning multifunctional graphene-TiO2 hybrid films[J].Journal of Colloid and Interface Science,2014,420:119-126.
[28] Wu B,He W,Lu M,et al.Fabrication and electrochemical properties of flexible transparent supercapacitor electrode materials based on cellulose nanofibrils and reduced graphene oxide[J].Polymer Composites,2020,41(3):1135-1144.
[29] Bae S Y,Jeon I Y,Yang J,et al.Large-area graphene films by simple solution casting of edge-selectively functionalized graphite[J].ACS Nano,2011,5(6):4974-4980.
[30] Dong B,Zhang L,Wu Y.Highly conductive natural rubber-graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application[J].Journal of Materials Science,2016,51(23):10561-10573.
[31] Hemasiri B W N H,Kim J K,Lee J M.Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques[J].Scientific Reports,2017,7(1):17868.
[32] Yu J,Wang M,Xu P,et al.Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber[J].Carbon,2017,119:332-338.
[33] Zhu Y,Ye X,Tang Z,et al.Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors[J].Applied Surface Science,2017,422:975-984.
[34] Sevilla M,Ferrero G A,Fuertes A B.Graphene-cellulose tissue composites for high power supercapacitors[J].Energy Storage Materials,2016,5:33-42.
[35] Wan X,Lu H,Kang J,et al.Preparation of graphene-glass fiber-resin composites and its electromagnetic shielding performance[J].Composite Interfaces,2018,25(10):883-900.
[36] Han G,Ma Z,Zhou B,et al.Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J].Journal of Colloid and Interface Science,2021,583:571-578.
[37] Xu L,Lu H,Zhou Y,et al.Ultrathin,ultralight,and anisotropic ordered reduced graphene oxide fiber electromagnetic interference shielding membrane[J].Advanced Materials Technologies,2021:2100531.
[38] Pan N,Wei Y,Zuo M,et al.Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,603:125186.
[39] Dasari M,Hautzinger M P,Fan-Hagenstein H,et al.Large area ultra-thin graphene films for functional photovoltaic devices[J].Journal of Materials Research,2018,33(16):2306-2317.
[40] Tugba Camic B,Oytun F,Hasan Aslan M,et al.Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices[J].Journal of Colloid and Interface Science,2017,505:79-86.
[41] Torres Alonso E,Rodrigues D P,Khetani M,et al.Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles[J].NPJ Flexible Electronics,2018,2(1):25.
[42] Ren H,Zheng L,Wang G,et al.Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors[J].ACS Nano,2019,13(5):5541-5548.
[1] 孙杨, 程子洋, 魏居媛, 李欣雨, 方静怡, 汪美芳. 具有高比电容的纳米Ni-MOF/GO的制备及赝电容特性研究[J]. 化工新型材料, 2023, 51(5): 106-112.
[2] 赵玉金, 吴淑英, 吴志民. 水性聚氨酯导热复合材料的制备及性能研究[J]. 化工新型材料, 2023, 51(5): 145-149.
[3] 王阳, 程礼盛, 谭晶, 杨卫民, 宋立健. 硅与甲烷复合修复氧化石墨烯缺陷的反应分子动力学模拟研究[J]. 化工新型材料, 2023, 51(5): 176-180.
[4] 朱俊杰, 丁颖, 姜涛, 刘海涛, 倪哲伟. 石墨烯气凝胶的制备及在污水处理中的应用[J]. 化工新型材料, 2023, 51(5): 244-248.
[5] 王健恺, 赵宝茹, 黄鑫, 杜小雨, 张永, 马文辉. 生物质碳微球/还原氧化石墨烯水凝胶的制备及其电化学性能研究[J]. 化工新型材料, 2023, 51(5): 255-260.
[6] 魏梦呈, 曾丹林, 陈阳, 柯萍, 黄刚, 付依迪, 赵晓玲. 石墨烯基气凝胶的制备及应用进展[J]. 化工新型材料, 2023, 51(4): 32-38.
[7] 王博煜, 尹常杰, 张秋禹. 二氧化硅协同氧化石墨烯改性丁苯橡胶复合材料及性能研究[J]. 化工新型材料, 2023, 51(4): 87-91.
[8] 徐岩岩, 张永红, 尹宗杰, 孙海翔, 熊磊, 李爽. 氧化石墨烯/聚乳酸自组装薄膜的制备及阻隔性能研究[J]. 化工新型材料, 2023, 51(4): 96-101.
[9] 马明生, 马景灵, 张毅, 贾兴良, 张晨飞. 水溶性石墨烯对双电解液镁空气电池放电性能的影响[J]. 化工新型材料, 2023, 51(4): 158-163.
[10] 马森, 高仕谦, 王振峰, 张占恩. 磺酸化铁酸镍磁性石墨烯复合材料活化过硫酸盐降解水中2-氨基苯并噻唑的研究[J]. 化工新型材料, 2023, 51(4): 208-213.
[11] 孙闫刚, 郭金星, 孙丽丽, 刘彬杨, 张霞, 许元栋. 用于铅离子检测的Cu-MOF电化学传感器构建及性能研究[J]. 化工新型材料, 2023, 51(4): 313-317.
[12] 常伟豪, 丁隆新, 刘毅, 李传强, 袁小亚, 郑旭煦. 石墨烯/MoS2复合材料的制备及其摩擦学和电化学性能研究进展[J]. 化工新型材料, 2023, 51(3): 7-13.
[13] 胡锦健, 李龙, 蔡涛. 碳基柔性电阻式应变传感器的研究进展[J]. 化工新型材料, 2023, 51(3): 52-57.
[14] 高亚辉, 孙玉宇, 黄晶晶, 王芳, 鲁照帅, 刘晓煊, 朱欣荣, 郝程倩, 汤玲玲. 分子桥连构筑氧化石墨烯膜及其吸附性能研究[J]. 化工新型材料, 2023, 51(3): 84-88.
[15] 何瑞强, 方敏, 周健夺, 费华, 杨凯, 卢康强, 穆萍. 两种方法还原GO制备RGO/MOF基复合相变材料及导热性能[J]. 化工新型材料, 2023, 51(3): 121-126.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn