Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2022, Vol. 50 Issue (7): 7-10    DOI: 10.19817/j.cnki.issn1006-3536.2022.07.002
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
三维多孔碳气凝胶储能材料的研究进展与展望
吕春飞, 马晓军*, 杨昭昭
天津科技大学轻工科学与工程学院,天津 300222
Research progress and prospect of 3D porous carbon aerogel energy storage materials
Lv Chunfei, Ma Xiaojun, Yang Zhaozhao
College of Light Industry Science and Engineering,Tianjin University of Science and Technology,Tianjin 300222
下载: 
输出:  BibTeX | EndNote (RIS)      
摘要 随着5G时代的到来,社会智能化的步伐逐渐加快,而且石油、煤炭等资源的枯竭等问题日益严峻,这就促使人们对一些绿色高效储能材料的探究。碳气凝胶作为唯一可以导电的气凝胶已被认为是众多能量存储材料中最有前途的候选者,其制备工艺具有多样性。主要总结了碳气凝胶的基本制备方式,概述了设计的多种工艺方法,最后对碳气凝胶材料今后发展做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕春飞
马晓军
杨昭昭
关键词:  碳气凝胶  制备  储能材料    
Abstract: With the advent of 5g era,the pace of social intelligence is gradually accelerating,and the depletion of oil,coal and other resources is becoming increasingly serious,which urges people to explore some green and efficient energy storage materials.Three-dimensional(3D) porous carbon aerogels as the only conductive aerogels have been considered as the most promising candidates for many energy storage materials,and their preparation processes are diverse.The basic preparation methods of carbon aerogels were mainly summarized,and introduced designed multiple processes,and finally prospected the future development of the carbon aerogels.
Key words:  carbon aerogel    preparation    energy storage material
收稿日期:  2021-03-23      修回日期:  2022-02-24           出版日期:  2022-07-20      发布日期:  2022-08-09     
ZTFLH:  TB34  
  TM53  
基金资助: 国家自然科学基金(31870564)
通讯作者:  马晓军(1975-),男,研究员,博士研究生导师,研究方向为生物质碳材料,E-mail:mxj75@tust.edu.cn。   
作者简介:  吕春飞(1996-),女,硕士研究生,研究方向为碳材料方面,E-mail:1689535674@qq.com。
引用本文:    
吕春飞, 马晓军, 杨昭昭. 三维多孔碳气凝胶储能材料的研究进展与展望[J]. 化工新型材料, 2022, 50(7): 7-10.
Lv Chunfei, Ma Xiaojun, Yang Zhaozhao. Research progress and prospect of 3D porous carbon aerogel energy storage materials. New Chemical Materials, 2022, 50(7): 7-10.
链接本文:  
https://www.hgxx.org/CN/10.19817/j.cnki.issn1006-3536.2022.07.002  或          https://www.hgxx.org/CN/Y2022/V50/I7/7
[1] Ibarra Torres C E,Serrano Quezada T E,Kharissova O V,et al.Carbon-based aerogels and xerogels:synthesis,properties,oil sorption capacities,and DFT simulations[J].Journal of Environmental Chemical Engineering,2021,9(1):104886.
[2] Chhetri K,Subedi S,Muthurasu A,et al.A review on nanofiber aerogels for energy storage and conversion applications[J].Journal of Energy Storage,2022,46:103927.
[3] 柳景亚.碳气凝胶的制备及表征[D].武汉:武汉工程大学,2016.
[4] Fricke J.Aerogels-highly tenuous solids with fascinating properties[J].Journal of Non-Crystalline Solids,1988,100(1-3):169-173.
[5] Rao A V,Bhagat S D,Hirashima H,et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor[J].Journal of Colloid and Interface Science,2006,300(1):279-285.
[6] Yang S J,Kang J H,Jung H,et al.Preparation of a freestanding,macroporous reduced graphene oxide film as an efficient and recyclable sorbent for oils and organic solvents[J].Journal of Materials Chemistry A,2013,1(33):9427-9432.
[7] 符若文,刘晓方,吴丁财.炭气凝胶的制备及其在超级电容器中的应用研究进展[C].秦皇岛:第五届中国功能材料及其应用学术会议,2004.
[8] Yu Zhilong,Yang Ning,Apostolopoulou-Kalkavoura Varvara,et al.Fire-retardant and thermally insulating phenolic-silica aerogels[J].Angewandte Chemie (International ed.in English),2018,130(17):4628-4632.
[9] Li Z,Li X,Liao Y,et al.Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability[J].Journal of Power Sources,2016,334:23-30.
[10] 黄常刚,唐永建,王朝阳,等.间苯三酚-甲醛气凝胶及其碳气凝胶的制备与表征[J].强激光与粒子束,2006,18(6):949-952.
[11] Su L,Wang D C Y,Luo Z H,et al.Reverse microemulsion synthesis of mesopore phloroglucinol-resorcinol-formaldehyde carbon aerogel microsphere as nano-platinum catalyst support for ORR[J].ChemistrySelect,2020,5(2):538-541.
[12] 陈媛,韩雁明,范东斌,等.生物质纤维素基碳气凝胶材料研究进展[J].林业科学,2019,55(10):88-98.
[13] Pin H,Zhenhuan Z,Jian T,et al.Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J].Nanoscale,2014,6(20):12120-12129.
[14] Sun J,Li W,E L,et al.Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials[J].Journal of Power Sources,2019,438:227030.
[15] Zhang Z,Li L,Qing Y,et al.Manipulation of nanoplate structures in carbonized cellulose nanofibril aerogel for high-performance supercapacitor[J].The Journal of Physical Chemistry C,2019,123(38):23374-23381.
[16] Han S,Sun Q,Zheng H,et al.Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution[J].Carbohydrate Polymers,2016,136:95-100.
[17] Chen Y,Yang S,Fan D,et al.Dual-enhanced hydrophobic and mechanical properties of long-range 3D anisotropic binary-composite nanocellulose foams via bidirectional gradient freezing[J].ACS Sustainable Chemistry & Engineering,2019,7(15):12878-12886.
[18] Wang Y,Qu Q,Gao S,et al.Biomass derived carbon as binder-free electrode materials for supercapacitors[J].Carbon,2019,155:706-726.
[19] Yang Q,Yang J,Gao Z,et al.Carbonized cellulose nanofibril/graphene oxide composite aerogels for high-performance supercapacitors[J].ACS Applied Energy Materials,2019,3(1):1145-1151.
[20] 昝逸凡,张彦飞,赵新鹏,等.原生生物质水热炭化制备碳材料及其应用[J].辽宁石油化工大学学报,2020,40(4):70-79.
[21] Yang I,Kim S G,Kwon S H,et al.Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes[J].Electrochimica Acta,2017,223:21-30.
[22] Ciszewski M,Szatkowska E,Koszorek A,et al.Carbon aerogels modified with graphene oxide,graphene and CNT as symetric supercapacitor electrodes[J].Journal of Materials Science-Materials in Electronics,2017,28(6):4897-4903.
[23] Chang Y M,Wu C Y,Wu P W.Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors[J].Journal of Power Sources,2013,223:147-154.
[24] Zhang W,Huang Z H,Zhou C,et al.Porous carbon for electrochemical capacitors prepared from a resorcinol/formaldehyde-based organic aquagel with nano-sized particles[J].Journal of Materials Chemistry,2012,22(15):7158-7163.
[25] Mirzaeian M,Abbas Q,Gibson D,et al.Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications[J].Energy,2019,173:809-819.
[26] Ciszewski M,Szatkowska E,Koszorek A.Lithium-catalyzed carbon aerogel and its possible application in energy storage materials[J].Journal of Electronic Materials,2017,46:4612-4617.
[27] Li W C,Lu A H,Schuth F.Preparation of monolithic carbon aerogels and investigation of their pore interconnectivity by a nanocasting pathway[J].Chemistry of Materials,2005,17(14):3620-3626.
[28] Gao J,Zhang X,Yang J,et al.Ethylenediamine-catalyzed preparation of nitrogen-doped hierarchically porous carbon aerogel under hypersaline condition for high-performance supercapacitors and organic solvent absorbents[J].Nanomaterials (Basel),2019,9(5),DOI:10.3390/nano9050771.
[29] Yang Bingchao,Hao Chunxue,Wen Fusheng,et al.Flexible black-phosphorus nanoflake/carbon nanotube composite paper for high-performance all-solid-state supercapacitors[J].ACS Applied Materials & Interfaces,2017,9(51):44478-44484.
[30] 肖刚,刘继驰,金保升,等.稻类秸秆高温炭化焦炭的特性研究[J].燃烧科学与技术,2010,16(1):1-4.
[31] 曹俊,肖刚,许啸,等.木质素热解/炭化官能团演变与焦炭形成[J].东南大学学报(自然科学版),2012,42(1):83-87.
[32] Shi C,Hu L,Guo K,et al.Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high-performance supercapacitors in universal electrolyte[J].Advanced Sustainable Systems,2017,1(1-2):1600011.
[33] Bouchelta C,Medjram M S,Bertrand O,et al.Preparation and characterization of activated carbon from date stones by physical activation with steam[J].Journal of Analytical and Applied Pyrolysis,2008,82(1):70-77.
[1] 邱凯, 毛恒洋, 李梅生, 周守勇, 张琪, 赵宜江. 一维无机纳米材料在膜分离领域的应用进展[J]. 化工新型材料, 2022, 50(7): 33-37.
[2] 魏良, 王健恺, 刘凯歌, 周青云, 潘昊鑫, 张永. 纳米纤维素的制备及其在储能领域的应用[J]. 化工新型材料, 2022, 50(7): 43-46.
[3] 赵雅婷, 赵雪松, 张阁昊, 李奇. 沙柳/PE-HD发泡木塑复合材料的制备及性能研究[J]. 化工新型材料, 2022, 50(7): 114-119.
[4] 李克丽, 李艳艳, 葛明桥. ZnO/CuO修饰多孔Ti电极的制备及其电化学性能[J]. 化工新型材料, 2022, 50(7): 120-124.
[5] 郑宇, 王趁义, 徐园园, 田啸, 汤唯唯. 兼具去除CODMn和NH+4-N双重功能的类芬顿复合材料的制备及性能优化研究[J]. 化工新型材料, 2022, 50(7): 151-155.
[6] 赵毅, 王佳, 李静雯, 王梦雨. 水泥基材料表面超疏水涂层研究进展[J]. 化工新型材料, 2022, 50(7): 219-224.
[7] 付依迪, 曾丹林, 王荣, 柯萍, 覃荣华. 氮掺杂碳微球的制备及应用研究进展[J]. 化工新型材料, 2022, 50(6): 1-6.
[8] 郝慧敏, 王黎明, 曹刘奇, 沈勇, 徐丽慧. 核壳结构吸波材料的研究进展[J]. 化工新型材料, 2022, 50(6): 14-18.
[9] 刘瑞勇, 殷进, 钱小青, 赵磊, 高婷. 废锂离子电池阴极制备再生材料研究进展[J]. 化工新型材料, 2022, 50(6): 66-70.
[10] 罗凤兰, 谢红艳. 锂离子电池锰酸锂正极材料研究进展[J]. 化工新型材料, 2022, 50(6): 75-79.
[11] 李萍, 王晓川. 含异噁唑啉环的含能热塑性弹性体的合成及性能研究[J]. 化工新型材料, 2022, 50(6): 96-98.
[12] 万磊, 武宏大, 耿忠兴, 任铁强, 杨占旭. 二硫化钨纳米片的制备及电化学应用研究进展[J]. 化工新型材料, 2022, 50(5): 27-31.
[13] 王一杰, 梁兵. 机械法制备石墨烯及石墨烯的边缘功能化的研究进展[J]. 化工新型材料, 2022, 50(5): 49-52.
[14] 梁慧, 李长波, 赵国峥, 付玉婷, 王硕, 许洪祝. 铈基催化剂的制备及其在湿式催化氧化处理废水中应用研究进展[J]. 化工新型材料, 2022, 50(5): 71-74.
[15] 欧阳立芳, 郭美华, 李翔晟, 陈志峰, 王雨妍, 李藏龙. EG-CF/PW三元复合相变材料的制备及热特性分析[J]. 化工新型材料, 2022, 50(5): 146-150.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn