Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (9): 207-210    
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
多孔有机聚合物在隔热和阻燃方面的应用
魏慧娟, 王菲, 张政, 孙寒雪, 李安*
兰州理工大学石油化工学院,兰州730050
Application of porous organic polymer in thermal insulation and flame retardant
Wei Huijuan, Wang Fei, Zhang Zheng, Sun Hanxue, Li An
College of Petrochemical Technology,Lanzhou University of Technology,Lanzhou 730050
下载:  PDF (1154KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一类新型的纳米多孔材料,多孔有机聚合物(Porous organic polymer,POP)由于其具有比表面积大,吸附性能强、相对密度低和环境友好等优点,在离子交换、催化、气体分离和气体储存等领域具有巨大的潜在应用前景,并引起了学术界的广泛关注。多孔有机聚合物高的孔隙率以及其独特的孔道结构,使其具有良好的隔热特性,通过引入含有不同阻燃元素或官能团的有机砌块可提升其阻燃性。因此,多孔有机聚合物可作为隔热和阻燃材料被使用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏慧娟
王菲
张政
孙寒雪
李安
关键词:  多孔有机  聚合物  隔热  阻燃    
Abstract: As a new class of nanoporous materials,porous organic polymers have enormous advantages of larger specific surface area,strong adsorption performance,low relative density and environmental friendliness.It has aroused widespread concern in academia with potential application prospects in ion exchange,catalytic,gas separation,gas storage and so on.The high porosity of the polymer and its unique pore structure give it excellent thermal insulation properties.The flame retardance of the polymer can be improved by introducing organic blocks contained different flame retardant elements or functional groups.Therefore,the porous organic polymer can be used as thermal insulation and flame retardant materials.
Key words:  porous organic matter    polymer    heat insulation    flame retardant
收稿日期:  2018-04-13      修回日期:  2019-06-20                发布日期:  2019-10-10      期的出版日期:  2019-09-20
基金资助: 国家自然科学基金项目(51663012,51462021)
通讯作者:  李安(1973-),男,博士,研究员,博士生导师,主要研究领域为微纳孔化工材料,作为项目负责人主持了有关国家自然科学基金、甘肃省杰出青年基金、甘肃省自然科学基金等项目的研究。   
作者简介:  魏慧娟(1985-),女,博士,主要从事隔热材料和阻燃材料的研究。
引用本文:    
魏慧娟, 王菲, 张政, 孙寒雪, 李安. 多孔有机聚合物在隔热和阻燃方面的应用[J]. 化工新型材料, 2019, 47(9): 207-210.
Wei Huijuan, Wang Fei, Zhang Zheng, Sun Hanxue, Li An. Application of porous organic polymer in thermal insulation and flame retardant. New Chemical Materials, 2019, 47(9): 207-210.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I9/207
[1] Zheng G,Jing Y,Huang H,et al.Application of improved grey relational projection method to evaluate sustainable building envelope performance[J].Applied Energy,2010,87(2):710-720.
[2] Bolattürk A.Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey[J].Applied Thermal Engineering,2006,26(11):1301-1309.
[3] Wang Y,Huang Z,Heng L.Cost-effectiveness assessment of insulated exterior walls of residential buildings in cold climate[J].International Journal of Project Management,2007,25(2):143-149.
[4] Papadopoulos A M,Giama E.Environmental performance evaluation of thermal insulation materials and its impact on the building[J].Building and Environment,2007,42(5):2178-2187.
[5] Kumar A,Suman B M.Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate[J].Building and Environment,2013,59:635-643.
[6] Lakatos Á,Kalmár F.Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials[J].Materials and Structures,2013,46(7):1101-1105.
[7] Mati-Baouche N,De Baynast H,Lebert A,et al.Mechanical,thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan[J].Industrial Crops and Products,2014,58:244-250.
[8] Jelle B P.Traditional,state-of-the-art and future thermal building insulation materials and solutions-properties,requirements and possibilities[J].Energy and Buildings,2011,43(10):2549-2563.
[9] Ben T,Ren H,Ma S,et al.Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J].Angewandte Chemie,2009,121(50):9621-9624.
[10] Rose M,Klein N,Senkovska I,et al.A new route to porous monolithic organic frameworks via cyclotrimerization[J].Journal of Materials Chemistry,2011,21(3):711-716.
[11] Jiang J X,Trewin A,Su F,et al.Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis,properties,and atomistic simulation[J].Macromolecules,2009,42(7):2658-2666.
[12] Hu X,An Q,Li G,et al.Imprinted photonic polymers for chiral recognition[J].Angewandte Chemie International Edition,2006,45(48):8145-8148.
[13] Wood C D,Tan B,Trewin A,et al.Microporous organic polymers for methane storage[J].Advanced Materials,2008,20(10):1916-1921.
[14] Melosh N A,Davidson P,Chmelka B F.Monolithic mesophase silica with large ordering domains[J].Journal of the American Chemical Society,2000,122(5):823-829.
[15] Phillip W A,Rzayev J,Hillmyer M A,et al.Gas and water liquid transport through nanoporous block copolymer membranes[J].Journal of Membrane Science,2006,286(1):144-152.
[16] Bernards D A,Desai T A.Nanoscale porosity in polymer films:fabrication and therapeutic applications[J].Soft Matter,2010,6(8):1621-1631.
[17] Yang S Y,Park J,Yoon J,et al.Virus filtration membranes prepared from nanoporous block copolymers with good dimensional stability under high pressures and excellent solvent resistance[J].Advanced Functional Materials,2008,18(9):1371-1377.
[18] Thomas A,Goettmann F,Antonietti M.Hard templates for soft materials:creating nanostructured organic materials[J].Chemistry of Materials,2008,20(3):738-755.
[19] Wu D,Xu F,Sun B,et al.Design and preparation of porous polymers[J].Chemical Reviews,2012,112(7)3959-4015.
[20] Johnson S A,Ollivier P J,Mallouk T E.Ordered mesoporous polymers of tunable pore size from colloidal silica templates[J].Science,1999,283(5404):963-965.
[21] Upadhyaya L,Semsarilar M,Fernandez-Pacheco R,et al.Porous membranes from acid decorated block copolymer nano-objects via RAFT alcoholic dispersion polymerization[J].Polymer Chemistry,2016,7(10):1899-1906.
[22] Hoheisel T N,Hur K,Wiesner U B.Block copolymer-nanoparticle hybrid self-assembly[J].Progress in Polymer Science,2015,40:3-32.
[23] Figg C A,Simula A,Gebre K A,et al.Polymerization-induced thermal self-assembly(PITSA)[J].Chemical Science,2014,6(2):63-80.
[24] Kim J K,Yang S Y,Lee Y,et al.Functional nanomaterials based on block copolymer self-assembly[J].Progress in Polymer Science,2010,35(11):1325-1349.
[25] Holst J R,Cooper A I.Ultrahigh surface area in porous solids[J].Advanced Materials,2010,22(45):5212-5216.
[26] Carson J K,Lovatt S J,Tanner D J,et al.Thermal conductivity bounds for isotropic,porous materials[J].International Journal of Heat and Mass Transfer,2005,48(11):2150-2158.
[27] Loeb Arthur L.Thermal conductivity:Ⅷ,a theory of thermal conductivity of porous materials[J].Journal of the American Ceramic Society,2011,37(2):96-99.
[28] Schlichting K W,Padture N P,Klemens P G.Thermal conductivity of dense and porous yttria-stabilized zirconia[J].Journal of Materials Science,2001,36(12):3003-3010.
[29] Nait-Ali B,Haberko K,Vesteghem H,et al.Thermal conductivity of highly porous zirconia[J].Journal of the European Ceramic Society,2006,26(16):3567-3574.
[30] McKeown N B,Hanif S,Msayib K,et al.Porphyrin-based nanoporous network polymers[J].Chemical Communications,2002,23:2782-2783.
[31] Kuhn P,Thomas A,Antonietti M.Toward tailorable porous organic polymer networks:a high-temperature dynamic polymerization scheme based on aromatic nitriles[J].Macromolecules,2009,42(1):319-326.
[32] Yang R,Hu W,Xu L,et al.Synthesis,mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate[J].Polymer Degradation and Stability,2015,122:102-109.
[33] Liu X,Xu D M,Wang Y L,et al.Smoke and toxicity suppression properties of ferrites on flame-retardant polyurethane-polyisocyanurate foams filled with phosphonate[J].Journal of Thermal Analysis and Calorimetry,2016,125(7):245-254.
[34] Toldy A,Szlancsik Á,Szolnoki B.Reactive flame retardancy of cyanate ester/epoxy resin blends and their carbon fibre reinforced composites[J].Polymer Degradation and Stability,2016,128:29-38.
[35] Wirasaputra A,Yao X,Zhu Y,et al.Flame-retarded epoxy resins with a curing agent of DOPO-triazine based anhydride[J].Macromolecular Materials and Engineering,2016,301(8):982-991.
[36] Wirasaputra A,Zheng L,Liu S,et al.High-performance flame-retarded polyamide-6 composite fabricated by chain extension[J].Macromolecular Materials and Engineering,2016,301(5):614-624.
[37] Lu S Y,Hamerton I.Recent developments in the chemistry of halogen-free flame retardant polymers[J].Progress in Polymer Science,2002,27(8):1661-1712.
[1] 张强, 张卓, 杨威, 张均, 姜志国. 结构型阻燃聚氨酯硬质泡沫研究进展[J]. 化工新型材料, 2019, 47(9): 211-214.
[2] 樊崇辉, 王海洋, 徐阳. 氢氧化镁自组装高效阻燃棉织物的制备及性能研究[J]. 化工新型材料, 2019, 47(8): 106-109.
[3] 陈双莉, 封扬, 党媛. 介孔SiO2纳米球为载体的Pb(Ⅱ)印迹聚合物吸附性能研究[J]. 化工新型材料, 2019, 47(8): 201-205.
[4] 王世成, 王宏超, 谢泓辉, 李奕奕, 许一婷, 戴李宗. 表面负载聚苯胺纳米线聚合物复合微球的制备及其防腐性能研究[J]. 化工新型材料, 2019, 47(7): 82-87.
[5] 李鹏, 刘晨, 李军强, 肖啸, 王长健, 张富平, 杨士山. 六(4-羟甲基苯氧基)环三磷腈阻燃剂/聚酰亚胺纤维对三元乙丙包覆层烟雾性能的影响[J]. 化工新型材料, 2019, 47(7): 107-110.
[6] 李贺, 罗健林, 李秋义, 刘超, 陈帅超. 韧性纤维增强聚合物砂浆的粘结修复与收缩耐久性能[J]. 化工新型材料, 2019, 47(7): 266-270.
[7] 柳滢春, 郭建维, 罗涛, 王伟彬. 有机电致发光中的蓝光材料研究进展[J]. 化工新型材料, 2019, 47(6): 30-34.
[8] 王远航, 张乃恩, 郭晓荣, 晏泓. 材料表面膨胀型涂层应用进展[J]. 化工新型材料, 2019, 47(6): 39-43.
[9] 张靖桢, 徐清. 新型窄带隙聚合物太阳能电池材料的合成及性能研究[J]. 化工新型材料, 2019, 47(6): 63-67.
[10] 万晓明, 倪恒健, 王文华, 郭军红, 杨保平, 崔锦峰. 元素杂化阻燃高分子材料的研究进展[J]. 化工新型材料, 2019, 47(5): 14-18.
[11] 高喜平, 李小童, 齐晨晨, 张兴刚, 陆昶, 张用兵. 纳米无机粒子协同聚磷酸铵阻燃高分材料的研究进展[J]. 化工新型材料, 2019, 47(5): 27-31.
[12] 康博文, 谢贤, 陈铁华, 许乌鹏, 赵楚, 黎洁. 地质聚合物及其在尾矿治理方面的研究进展[J]. 化工新型材料, 2019, 47(5): 36-41.
[13] 叶心亮, 邵丹, 李向峰. 共轭聚合物传感器研究进展[J]. 化工新型材料, 2019, 47(5): 55-58.
[14] 张希,李廷鱼,李朋伟,胡杰,李刚. 基于TEABF4/PAN-b-PEG-b-PAN柔性超级电容器的性能研究[J]. 化工新型材料, 2019, 47(4): 89-92.
[15] 李刚,吴琳,于奕峰,葛雪松,张萌,姜义军,陈爱兵. 新型环保阻燃抑烟剂羟基锡酸锌的研究进展[J]. 化工新型材料, 2019, 47(4): 226-229.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn