Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (9): 1-5    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
新型核壳材料的性能及其在环境相关领域的研究进展
马传博1, 易红宏1,2*, 唐晓龙1,2, 赵顺征1,2, 宋灵灵1
1.北京科技大学能源与环境工程学院,北京100083;
2.工业典型污染物资源化处理北京市重点实验室,北京100083
Progress on property and application of new core-shell material in environmental related field
Ma Chuanbo1, Yi Honghong1,2, Tang Xiaolong1,2, Zhao Shunzheng1,2, Song Lingling1
1.School of Energy and Environmental Engineering,Beijing University of Science and Technology,Beijing 100083;
2.Beijing Key Laboratory of Industrial typical Pollutant Resource Treatment,Beijing 100083
下载:  PDF (1191KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着新型环境材料领域研究的不断深入和发展,纳米核壳材料因其独特的结构及其在诸多性能上的独特优越性,受到广大环境相关领域研究者的关注。详细归纳和总结了纳米核壳材料优良的光学性能、催化性能、电化学性能、吸附性能及其作用机理,并阐述了相关性能在解决日益加剧的环境污染问题及能源危机问题等相关领域的研究和应用,同时对纳米核壳材料未来的研究重点进行了展望。进一步加强对纳米核壳材料作用机理的研究,优化材料的制备方法,以及利用合理的办法尽快使其投入到工业化运行,可使核壳材料获得更好的研究价值和利用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马传博
易红宏
唐晓龙
赵顺征
宋灵灵
关键词:  纳米核壳  优良性能  环境领域  应用    
Abstract: With the development of environmental materials,nanocrystalline core-shell materials are the attention center by their unique structure and unique advantages in many properties.The excellent optical properties,catalytic properties,electrochemical properties,adsorption properties and mechanism of nanocrystalline core-shell materials were summarized in detail.The research and application in solving the problem of environmental pollution and energy crisis were discussed.At the same time,some problems still need to be solved in the future research process of the materials were put forward.Further it was strengthened that the research on the mechanism of materials,optimizing the preparation methods,using reasonable method to put it into industrial operation,as soon as possible can make the core-shell material obtain better research value and utilization value.
Key words:  nano-core-shell    excellent property    environmental field    application
收稿日期:  2018-04-20      修回日期:  2018-06-28                发布日期:  2019-10-10      期的出版日期:  2019-09-20
基金资助: 国家自然科学基金(21577006)
通讯作者:  易红宏(1976-),女,教授,博士研究生导师,主要从事环境污染控制与治理、环境功能材料等研究。   
作者简介:  马传博(1995-),男,硕士研究生,主要研究方向为大气污染控制、环境功能材料。
引用本文:    
马传博, 易红宏, 唐晓龙, 赵顺征, 宋灵灵. 新型核壳材料的性能及其在环境相关领域的研究进展[J]. 化工新型材料, 2019, 47(9): 1-5.
Ma Chuanbo, Yi Honghong, Tang Xiaolong, Zhao Shunzheng, Song Lingling. Progress on property and application of new core-shell material in environmental related field. New Chemical Materials, 2019, 47(9): 1-5.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I9/1
[1] Li Y,Zhong W Q,Ju J,et al.Experiment on simultaneous absorption of NO and SO2 from sintering flue gas by oxidizing agents of KMnO4/NaClO[J].International Journal of Chemical Reactor Engineering,2014,12(1):539.
[2] Shchukin D G,Kulak A I.Magnetic photocatalysts of the core-shell type[J].Photochemical & Photo Biological Sciences,2002,1(10):742.
[3] Reiss P,Protière M,Li L.Core/shell semiconductor nanocrystals[J].Small,2009,5(2):154.
[4] Yu J,Wang Q,O'hare D,et al.Preparation of two dimensional layered double hydroxide nanosheets and their applications[J].Chemical Society Reviews,2017,46(19):5950.
[5] Ramireznuñez A L,Jimenezgarcia L F,Sanz B,et al.In vitro magnetic hyperthermia using polyphenol-coated Fe3O4@γ-Fe2O3 nanoparticles from cinnamomun verum and vanilla planifolia:the concert of green synthesis and therapeutic possibilities[J].Nanotechnology,2017,DOI:10.1088/1361-6528/aaa2c1.
[6] Saifuddin N.Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation[J].Journal of Chemistry,2012,6(1):61.
[7] Vinokurov V A,Stavitskaya A V,Glotov A P,et al.Nanoparticles formed onto/into halloysite clay tubules:architectural synthesis and applications[J].Chemical Record,2018,DOI:10.1002/tcr.201700089.
[8] Ahmed A,Skinley K,Herodotou S,et al.Core-shell microspheres with porous nanostructured shells for liquid chromatography[J].Journal of Separation Science,2017,DOI:10.1002/jssc.201700850.
[9] Xie Y P,Yu Z B,Liu G,et al.CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light[J].Energy & Environmental Science,2014,7(6):1895.
[10] Li J F,Zhang Y J,Ding S Y,et al.Core-shell nanoparticle-enhanced raman spectroscopy[J].Chemical Reviews,2017,117(7):5002.
[11] Chaudhuri R G,Paria S.Core/shell nanoparticles:classes,properties,synthesis mechanisms,characterizationand applications[J].Chemical Reviews,2012,112(4):2373.
[12] Xu Q,Zhang Z,Song X,et al.Improving the triethylamine sensing performance based on debye length:a case study on α-Fe2O3@NiO(CuO) core-shell nanorods sensor working at near room-temperature[J].Sensors & Actuators B Chemical,2017,245:375-385.
[13] Zhang S W,Fan Q H,Gao H H,et al.Formation of Fe3O4@MnO2 ball-in-ball hollow spheres as a high performance catalyst for enhanced catalytic performances[J].Journal of Materials Chemistry A,2015,4(4):1414.
[14] Sun H,He J T,Wang J Y,et al.Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation[J].Journal of the American Chemical Society,2013,135(24):9099.
[15] Schãrtl W.Current directions in core-shell nanoparticle design[J].Nanoscale,2010,2(6):829.
[16] Zhou L,Hong G,Li T,et al.Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2nanocapsules with outstanding lithium storage[J].Scientific Reports,2015,5:15252.
[17] Li Q,Li L,Owusu K A,et al.Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage[J].Nano Energy,2017,41:109-116.
[18] Ma X,Diroll B T,Fedin I,et al.Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets[J].Acs Nano,2017,11(9):9119.
[19] Khanchandani S,Kumar S,Ganguli A K.Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis[J].Acs Sustainable Chemistry & Engineering,2016,4(3):1487.
[20] Wang Z,Huo Y,Zhang J.Facile preparation of two-dimensional Bi2MoO6 @Ag2MoO4 core-shell composite with enhanced visible light photocatalytic activity[J].Journal of Alloys & Compounds,2017,729:100-108.
[21] Somorjai G A,Park J Y.Molecular factors of catalytic selectivity[J].Angewandte Chemie,2008,47(48):9212.
[22] Tao A R,Habas S,Yang P.Shape control of colloidal metal nanocrystals[J].Small,2010,4(3):310.
[23] Zhang S W,Fan Q H,Gao H H,et al.Formation of Fe3O4@MnO2 ball-in-ball hollow spheres as a high performance catalyst for enhanced catalytic performances[J].Journal of Materials Chemistry A,2015,4(4):1414.
[24] Yang X L,Dai W L.Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2[J].Journal of Catalysis,2005,234(2):438.
[25] Bartholomew C H.Mechanisms of catalyst deactivation[J].Applied Catalysis A General,2001,212(1/2):17.
[26] Zhang Q,Lee I,Joo J B,et al.Core-shell nanostructured catalysts[J].Accounts of Chemical Research,2013,46(8):1816.
[27] Guo T,Jiang W,Ruan Y,et al.Superparamagnetic Mo-containing core-shell microspheres for catalytic oxidative desulfurization of fuel[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2017,547:243-249.
[28] Yin H F,Ma Z,Chi M F,et al.Heterostructured catalysts prepared by dispersing Au@Fe2O3,core-shell structures on supports and their performance in CO oxidation[J].Catalysis Today,2011,160(1):87.
[29] Fang Y,Tan J J,Lan T,et al.Universal one-pot,one-step synthesis of core-shell nanocomposites with self-assembled tannic acid shell and their antibacterial and catalytic activities[J].Journal of Applied Polymer Science,2017,DOI:10.1002/app.45829.
[30] Xiong Q,Zheng C,Chi H,et al.Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes[J].Nanotechnology,2017,28(5):055405.
[31] Knežević N Ž,Kaluđerović G N.Silicon-based nanotheranostics[J].Nanoscale,2017,9(35):12821.
[32] Cui X,Chen X,Zhang W,et al.Developing a facile method to construct 3D hierarchical CoMoO4@C@MnO2 core-shell structure aligned on Ni foam with enhanced pseudocapacitive performances[J].Journal of Alloys & Compounds,2017,695:2109-2116.
[33] Yan X,Yu S,Tang Y,et al.Triangular AgAu@Pt core-shell nanoframes with dendritic Pt shell and enhanced electrocatalytic performance toward methanol oxidation reaction[J].Nanoscale,2018,10:2231-2235.
[34] Hernández S,Cauda V,Chiodon A,et al.Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination[J].Acs Appl Mater Interfaces,2012,6(15):12153.
[35] He L,Zha W,Chen D.Effects of organic phosphorus acid on the core-shell structure and electrochemical properties of LiFePO4 uniformly wrapped with in-situ growed graphene nanosheets[J].Journal of Alloys & Compounds,2017,727:948-955.
[36] Ashcraft R W,Kovacevic J,Heynderickx G J,et al.Assessment of a gas-solid vortex reactor for SO2/NOx adsorption from flue gas[J].Industrial & Engineering Chemistry Research,2013,52(2):861.
[37] Zhou X,Yi H H,Tang X L,et al.Thermodynamics for the adsorption of SO2,NO and CO2 from flue gas on activated carbon fiber[J].Chemical Engineering Journal,2012,200:399-404.
[38] Talukdar P,Bhaduri B,Verma N.Catalytic oxidation of NO over CNF/ACF-supported CeO2 and Cu nanoparticles at room temperature[J].Industrial & Engineering Chemistry Research,2014,53(31):12537.
[39] Li Z,Mo L,Kathiraser Y,et al.Yolk-satellite-shell structured Ni-yolk@Ni@SiO2 nanocomposite:superb catalyst toward methane CO2 reforming reaction[J].ACS Catalysis,2014,4(5):1526.
[40] You L,Zhang Y,Xu S,et al.Movable magnetic porous cores enclosed within carbon microcapsules:structure-controlled synthesis and promoted carbon-based applications[J].ACS Applied Materials & Interfaces,2014,6(17):15179.
[41] Yi H H,Hua D,Tang X L,et al.Adsorption equilibrium and kinetics for SO2,NO,CO2 on zeolites FAU and LTA[J].Journal of Hazardous Materials,2012,203-204(4):111.
[42] Li Y T,Yi H H,Tang X L,et al.Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites[J].Chemical Engineering Journal,2016,304:89-97.
[43] Zhang B L,Yu H Y,Wang J Q,et al.Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase[J].Journal of Alloys and Compounds,2018,735:1986-1996.
[44] Yang Q X,Song H M,Li Y P,et al.Flower-like core-shell Fe3O4@MnO2 microspheres:synthesis and selective removal of congo red dye from aqueous solution[J].Journal of Molecular Liquids,2017,234:18-23.
[45] Zhang S,Niu H,Hu Z,et al.Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples[J].Analytical Chemistry,2010,82(6):2363.
[1] 时雅滨, 许晓娟, 贾启华, 高丹, 田明, 孙丽, 宋广凤, 张学彬. 层层自组装技术制备新型功能高分子材料研究进展[J]. 化工新型材料, 2019, 47(9): 11-13.
[2] 马秀花, 袁红, 王云杰, 张泓. 有序介孔碳材料的制备及应用[J]. 化工新型材料, 2019, 47(9): 19-23.
[3] 周孟娇, 杨思彤, 贾清秀. 纤维素纳米晶材料研究进展[J]. 化工新型材料, 2019, 47(9): 40-44.
[4] 张兵, 武卫东, 常海洲. 相变蓄热材料在节能建筑领域的应用与研究进展[J]. 化工新型材料, 2019, 47(9): 54-57.
[5] 杨可成, 徐丽慧, 孟云, 盛宇, 王黎明. 耐久性超疏水表面的研究进展[J]. 化工新型材料, 2019, 47(7): 232-236.
[6] 吴洁, 曾丹林. 磺酸型硅基固体酸制备及应用的研究进展[J]. 化工新型材料, 2019, 47(7): 251-256.
[7] 段婷婷, 汪得功, 王吉辉, 郭雁, 郑威, 黄玉松, 李宁, 王玲, 辛培训. 生物材料和超硬陶瓷材料的显微压痕对比分析研究[J]. 化工新型材料, 2019, 47(6): 168-170.
[8] 杨统林, 赵中华, 肖建军, 王海坤, 杨方麒, 邱祖民. 纳米材料的改性及其在涂料中的应用研究进展[J]. 化工新型材料, 2019, 47(5): 10-13.
[9] 周先波,陈嘉磊,胡亚一,刘琦,陈晨. 纳米氧化锌的改性及其光催化降解性能研究进展[J]. 化工新型材料, 2019, 47(4): 47-52.
[10] 王林变,赵英虎,高莉,孙友谊,杨柳. 氧化石墨烯-纳米银复合材料的应用研究进展[J]. 化工新型材料, 2019, 47(3): 1-5.
[11] 徐海升, 何丽娟, 王豪. 新型石墨烯复合材料的制备及其催化应用研究进展[J]. 化工新型材料, 2019, 47(3): 6-10.
[12] 黄添浩,林磊,王趁义,滕丽华,汤唯唯. 吸氮除磷材料的研究和应用现状[J]. 化工新型材料, 2019, 47(3): 39-42.
[13] 李津, 李伟, 彭军, 杨天雨, 刘皓. 多元醇法制备银纳米线的研究进展[J]. 化工新型材料, 2019, 47(2): 11-14.
[14] 赵世怀, 杨紫博, 赵晓明, 张旭平, 张翠翠, 陶超. 活性炭纤维在防护领域的应用进展[J]. 化工新型材料, 2019, 47(2): 15-17.
[15] 刘亚飞, 李梦, 赵欣, 张然, 张永兴, 邢一龙. 浅谈纳米银粒子的制备及其在抗菌涂料中的应用[J]. 化工新型材料, 2019, 47(2): 37-41.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn