Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (6): 219-222    
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
基于生物质制备活化三维多孔碳及其在微生物燃料电池中的应用
王莎1, 詹晓涵1, 郭文显1, 陈妹琼1*, 张敏2, 程发良2
1.东莞理工学院城市学院城市与环境科学系,东莞市绿色能源重点实验室,东莞523419;
2.东莞理工学院,生态环境与建筑工程学院,广东省新型纳米材料工程技术研究中心,东莞523808
Fabrication of 3DPC anode from biomass for microbial fuel cells
Wang Sha1, Zhan Xiaohan1, Guo Wenxian1, Chen Meiqiong1, Zhang Min2, Cheng Faliang2
1.Dongguan Key Laboratory of Green Energy,Department of City and Environment Science,City College of Dongguan University of Technology,Dongguan 523419;
2.Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan 523808
下载:  PDF (2763KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物燃料电池是一种能把污水中有机物蕴含的化学能直接转换成电能的装置。目前,相对低的输出功率密度限制了它的应用。开发高性能的阳极材料是解决途径之一。基于生物质秸秆利用Hummers氧化法结合抗坏血酸还原法制备了活化三维多孔碳阳极,用扫描电子显微镜观察了所制备的材料的形貌、发现活化过程可以产生许多大小不一的孔结构,可有效帮助传质扩散。交流阻抗谱、循环伏安测试表明,活化可以大大提高三维多孔碳的电化学性能,基于活化三维多孔碳3DPC阳极所制备的微生物燃料电池(MFCs),最大功率密度可达到1184.5W/m3,远远高于改性前(774.8W/m3)。此研究为构筑新型三维碳基阳极提供了新思路和新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王莎
詹晓涵
郭文显
陈妹琼
张敏
程发良
关键词:  三维  多孔  碳材料  阳极  微生物燃料电池    
Abstract: Microbial fuel cells(MFCs) are a device that can directly transfer chemistry energy from wastewater to electricity energy.Presently,relatively low power density limited its applications.One solution is to develop high performance anode materials.An advanced actived three-dimensional porous carbon(3DPC) anode was obtained by hummers oxidiation combined with ascorbic acid reduction based on biomass straws.The morphology of the 3DPC was observed using scanning electron microscope(SEM).It was found that the activation process can produce many pore structures of different sizes,which can facilitate mass transfer and diffusion.An improvement of the electrochemical properties can be observed in the electrochemical impedance spectroscopy(EIS),cyclic voltammetry(CV) tests.The microbial fuel cells based on the actived 3DPC exhibited a highest power density of 1184.5W/m3,which is much higher anode than that of pristine 3DPC-MFCs(774.8W/m3).This study provided new ideas and methods for the construction of novel carbon-based 3D anode materials.
Key words:  three-dimension    porous propery    carbon material    anode    microbial fuel cells
收稿日期:  2018-12-13                出版日期:  2019-06-20      发布日期:  2019-07-05      期的出版日期:  2019-06-20
基金资助: 国家自然科学基金(21775022);广东省自然科学基金(2017A030310603);广东省普通高校青年创新人才项目(自然科学)(2016KQNCX221);广东省普通高校创新团队项目(2015KCXTD029和2016KCXTD023));广东省普通高校特色创新项目(自然科学)(2015KTSCX179);广东大学生科技创新培育专项资金项目(pdjhb0640);东莞市社会科技发展项目(2017507151062);东莞理工学院城市学院重大科研培育项目(2017YZD003Z);东莞理工学院城市学院青年教师发展基金项目(2016QJZ002Z)
通讯作者:  陈妹琼(1982-),女,博士,副教授,主要从事功能碳材料的制备及应用研究。   
作者简介:  王莎(1997-),女,本科,主要从事功能碳材料的制备及应用研究。
引用本文:    
王莎, 詹晓涵, 郭文显, 陈妹琼, 张敏, 程发良. 基于生物质制备活化三维多孔碳及其在微生物燃料电池中的应用[J]. 化工新型材料, 2019, 47(6): 219-222.
Wang Sha, Zhan Xiaohan, Guo Wenxian, Chen Meiqiong, Zhang Min, Cheng Faliang. Fabrication of 3DPC anode from biomass for microbial fuel cells. New Chemical Materials, 2019, 47(6): 219-222.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I6/219
[1] Park D H,Laivenieks M,Guettler M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917.
[2] Bond D R,Holmes D E,Tender L M,et al.Electrode-reducing microorganisms that harvest energy from marine sediments[J].Science,2002,295(5554):483-485.
[3] Logan B E.Microbial fuel cells[M].New York:Wiley-Intersience,2008,61-83.
[4] Logan B E,Hamelers B,Rozendal R,et al.Microbial fuel cells:methodology and technology[J].Environmental Science & Technology,2006,40(17):5181-5192.
[5] Logan B E,Regan J M.Electricity-producing bacterial communities in microbial fuel cells[J].Trends in Microbiology,2006,14(12):512-518.
[6] Wang H,Wang G,Ling Y,et al.High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode[J].Nanoscale,2013,5(21):10283-10290.
[7] Xie X,Hu L,Pasta M,et al.Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells[J].Nano Letters,2011,11(1),291-296.
[8] Xie X,Ye M,Hu L,et al.Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes[J].Energy & Environmental Science,2012,5(1):5265-5270.
[9] Xie X,Yu G,Liu N,et al.Graphene-sponges as high-performance low-cost anodes for microbial fuel cells[J].Energy & Environmental Science,2012,5(5):6862-6866.
[10] Chen S,Hou H,Harnisch F,et al.Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells[J].Energy & Environmental Science,2011,4(4):1417-1421.
[11] He Z M,Liu J,Qiao Y,et al.Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell[J].Nano Letters,2012,12(9):4738-4741.
[12] Ren H,Tian H,Gardner C L,et al.A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10000W/m3[J].Nanoscale,2016,8(6):3539-3547.
[13] Chen M,Zeng Y,Zhao Y,et al.Monolithic three-dimensional graphene frameworks derived from inexpensive graphite paper as advanced anode for microbial fuel cells[J].Journal of Materials Chemistry A,2016,4(17):6342-6349.
[14] Erbay C,Yang G,de Figueiredo P,et al.Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells[J].Journal of Power Sources,2015,298(1):177-183.
[15] Chen S,He G,Hu X,et al.A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems[J].Chem Sus Chem,2012,5(6):1059-1063.
[16] Shuiliang C,Qin L,Guanghua H,et al.Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[J].Journal of Materials Chemistry,2012,22:18609-18613.
[17] Yuan Y,Zhou S G,Liu Y,et al.Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells[J].Environ Sci Technol,2013,47(24):14525-14532.
[18] 林家瑾,姚燕彤,陈嘉缘,等.基于木薯秸秆制备三维多孔碳及其在微生物燃料电池中的应用[J].化工进展,2017,36(10):3815-3819.
[19] 陈稳稳,刘中良,侯俊先,等.新型超级电容器材料修饰尿液微生物燃料电池阳极的研究[J].工程热物理学报,2018,39(8):1818-1823.
[20] 邓丰.微生物还原石墨烯原位修饰微生物燃料电池阳极及其生物膜特性研究[D].广州:华南理工大学,2018.
[21] Yong Y C,Yu Y Y,Zhang X,et al.Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm[J].Angewandte Chemie International Edition,2014,53(17):4480-4483.
[1] 胡志龙, 孙寒雪, 魏慧娟, 牟鹏, 李安. 多孔材料在去除废水中重金属离子方面的研究进展[J]. 化工新型材料, 2019, 47(7): 46-49.
[2] 李新芳, 赵素芬, 吴淑英, 付文亭. 纳米复合材料的制备及相变特性研究[J]. 化工新型材料, 2019, 47(7): 60-63.
[3] 付兴平, 金少强, 陈培珍, 杨自涛. 含氧纳米多孔碳球的制备及其在超级电容器中的应用[J]. 化工新型材料, 2019, 47(5): 46-50.
[4] 饶艳英, 李章良, 麻聪, 戴煌光. 多孔SiO2@金纳米复合材料的制备及其吸附性能研究[J]. 化工新型材料, 2019, 47(5): 244-248.
[5] 张改妮,任莉君. 三维分级多孔结构钴镍复合微球的制备及其电化学性能研究[J]. 化工新型材料, 2019, 47(3): 79-83.
[6] 田俊峰,陈哲,韩光鲁,尹志刚. 三维石墨烯/聚苯胺纳米线复合材料合成及室温气敏性能[J]. 化工新型材料, 2019, 47(3): 51-54.
[7] 韩帆, 张义, TrinhXuantung, 刘子森, 徐栋, 贺锋, 吴振斌. Sr-TiO2/多孔陶瓷滤球复合光催化剂对难降解有机物腐殖酸的去除性能[J]. 化工新型材料, 2019, 47(3): 259-263.
[8] 罗超,曹海建,黄晓梅,金博伦,王洪. 树脂基体种类对三维中空夹芯织物复合材料力学性能影响的研究[J]. 化工新型材料, 2019, 47(3): 138-142.
[9] 赵辉, 贾庆明, 陕绍云, 苏红莹, 董亚楠. 金属-有机框架材料碳化制备多孔碳及其应用[J]. 化工新型材料, 2019, 47(2): 22-26.
[10] 付欣, 杨蓉, 刘磊, 陈丹, 朱岸明, 李嘶晨, 路蕾蕾. 蜂窝状三维碳材料的制备及其在锂硫电池中的应用研究[J]. 化工新型材料, 2019, 47(2): 85-89.
[11] 吴蓬勃, 王成君, 朱洪宇, 孙寒雪. 多孔石墨烯制备及其纳米复合材料的研究进展[J]. 化工新型材料, 2019, 47(1): 6-9.
[12] 周文雅, 刘瑾, 李真, 蒋荣亮, 陈赛赛, 王新翠, 徐炯. 含胺基骨架多孔聚合物的合成及储氢性能研究[J]. 化工新型材料, 2019, 47(1): 120-123.
[13] 刘秀英, 孟令广, 于景新, 李晓东. 共价有机骨架材料的CO2捕获性能研究[J]. 化工新型材料, 2019, 47(1): 235-238.
[14] 曹鹏, 王江宁, 杨丽龙, 裴江峰, 陈俊波. 固体推进剂用富勒烯及其衍生物制备研究进展[J]. 化工新型材料, 2018, 46(9): 34-40.
[15] 李文斌, 荆涛, 田景芝, 李艳云, 邓启刚. 可溶性淀粉/三维氮掺杂石墨烯电化学性能研究[J]. 化工新型材料, 2018, 46(9): 109-112.
[1] Li Chunjing, Yang Ruixia, Ma Hao, Jin Huijiao, Shi Xiaodong, Ma Wenjing. Preparation of CH3NH3PbI2Br light absorber-layer thin film[J]. New Chemical Materials, 2018, 46(2): 155 -159 .
[2] Qiu Zhiwen, Sun Xiaogang, Pang Zhipeng, Liu Zhenhong, Chen Long, Cai Manyuan. Study on EMI shielding performance of conductive paper doped with carbon nanotube and rare earth oxide[J]. New Chemical Materials, 2018, 46(3): 75 -79 .
[3] Su Wei, Ran Meng, Zhang Ai, Sun Yan. Preparation of sulfur-doped microporous carbon and its adsorption property[J]. New Chemical Materials, 2018, 46(4): 161 -164 .
[4] Wang Yufei, Zheng Liping, Yao Jianhua, Li Jingjing. Novel progress of fluorofullerene applied in electronic material and device[J]. New Chemical Materials, 2018, 46(7): 5 -8 .
[5] Liu Yunmei. Application of nitrogen and sulfur co-doped carbon nanotube arrays and their catalytic performance[J]. New Chemical Materials, 2018, 46(7): 127 -130 .
[6] Su Yan, Zhang Qiang, Wang Bei, Deng Wei, Liang Yingchun, Yang Chaolong, Li Youbing. Preparation of PVA red-light film and research on its property[J]. New Chemical Materials, 2018, 46(9): 77 -79 .
[7] Geng Siyao, Wang Jie, Yao Bolong, Wang Likui. Synthesis and property of UV-curable fluorine-containing hyperbranched polyurethane[J]. New Chemical Materials, 2019, 47(1): 100 -104 .
[8] Shi Suyu, Ren Jiahua, Wang Lina, Xie Xiaokai, Xin Changzheng. Preparation and characterization of CS anion-exchange membrane modified by TPU conductive nonwoven[J]. New Chemical Materials, 2019, 47(2): 136 -139 .
[9] Wang Yuanhang, Zhang Naien, Guo Xiaorong, Yan Hong. Progress of intumescent flame retardant coating on material surface[J]. New Chemical Materials, 2019, 47(6): 39 -43 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn