Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (5): 96-99    
  新材料与新技术 本期目录 | 过刊浏览 | 高级检索 |
石墨烯改性NiY分子筛的合成及催化析氢性能研究
胡丽, 王改, 薄琼, 杨冬花*, 赵煜, 董志帅
太原理工大学化学化工学院,太原030024
Synthesis and hydroden evolution performance of graphene modified NiY zeolite
Hu Li, Wang Gai, Bo Qiong, Yang Donghua, Zhao Yu, Dong Zhishuai
College of Chemistry and Chemical Engineering,Taiyuan University of Technology, Taiyuan 030024
下载:  PDF (3288KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用原位合成法、还原法和浸渍法合成了石墨烯改性NiY分子筛,分别得到还原氧化石墨烯(rGO)-NiY、h-rGO-NiY和j-rGO-NiY子筛。利用X射线衍射仪、红外光谱和扫描电镜表征石墨烯改性NiY分子筛,结果表明:改性后,样品具有较高的结晶度,保持NiY分子筛的骨架结构,晶粒尺寸增大到3μm左右。在微生物电解池(MEC)阴极对石墨烯改性NiY分子筛进行催化析氢活性评价,评价结果为:12h内,rGO-NiY分子筛的最大电流密度8.10A/m2,产气量11.1mL,氢气净产量9.29mL,表现出优异的催化析氢性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡丽
王改
薄琼
杨冬花
赵煜
董志帅
关键词:  NiY分子筛  石墨烯  微生物电解池  催化析氢    
Abstract: A series of graphene modified NiY zeolites (including rGO-NiY,h-rGO-NiY and j-GO-NiY zeolites) were synthesized through in-situ method,reduction method and dipping method,respectively.With the help of XRD,FT-IR and SEM characterizations,high crystallinity,intact skeleton structure and big particle size(~3μm) were realized and confirmed after modification.Most importantly,the graphene modified NiY zeolites can be used as cathode catalyst in microbial electrolysis cell (MEC) to separate hydrogen.The evaluation of rGO-NiY showed as follows:during 12h,the maximum current density reached to 8.10A/m2,gas production were 11.1mL (pure hydrogen:9.29mL),demonstrating the excellent catalytic activity of hydrogen evolution.
Key words:  NiY zeolites    graphene    microbial electrolysis cell    catalytic activity of hydrogen evolution
收稿日期:  2018-01-05                     发布日期:  2019-06-17      期的出版日期:  2019-05-20
基金资助: 山西省自然科学基金(2014011014-6)
通讯作者:  杨冬花。   
作者简介:  胡丽(1989-),女,硕士,主要研究方向为催化新材料。
引用本文:    
胡丽, 王改, 薄琼, 杨冬花, 赵煜, 董志帅. 石墨烯改性NiY分子筛的合成及催化析氢性能研究[J]. 化工新型材料, 2019, 47(5): 96-99.
Hu Li, Wang Gai, Bo Qiong, Yang Donghua, Zhao Yu, Dong Zhishuai. Synthesis and hydroden evolution performance of graphene modified NiY zeolite. New Chemical Materials, 2019, 47(5): 96-99.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I5/96
[1] Call D,Logan B E.Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane[J].Environmental Science & Technology,2008,42(9):3401-3406.
[2] Freguia S,Rabaey K,Yuan Z,et al.Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J].Electrochimica Acta,2007,53(2):598-603.
[3] Liu M Y,He Y Q,Mao Z Q,et al.CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J].Chin J Power Sources,2002,26(z1):247-249.
[4] Jeremiasse A W,Hamelers H V M,Saakes M,et al.Ni foam cathode enables high volumetric H2 production in a microbial electrolysiscell[J].International Journal of Hydrogen Energy,2010,35(23):12716-12723.
[5] Jeremiasse A W,Bergsma J,Kleijn J M,et al.Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell[J].International Journal of Hydrogen Energy,2011,36(17):10482-10489.
[6] Ren Z D,Meng N,Shehzad K,et al.Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition[J].Nanotechnology,2015,26(6):1-8.
[7] Liu T T,Shao G J,Ji M T,et al.Synthesis of MnO2-graphene composites with enhanced supercapacitive performance via pulse electrodeposition under supergravity field[J].Jorinal of Solid State Chemistry,2014,215:160-166.
[8] 胡丽,杨冬花,赵煜,等.NiY分子筛在微生物电解池阴极析氢性能的研究[J].燃料化学学报,2018,46(5):607-614.
[9] Yang Y H,Sun H J,Peng T J,Huang Q.Acta phys-chim[J].Sin,2011,27(3):736.
[10] Zhou J H,Luo Y B,Zong B N.Formation mechanism of porous molecular sieve Y composite[J].Petroleum Processing and Petrochemicals,2012,43(1):26-31.
[11] Weitkamp J,Wei B U,Ernst S.New aspects and trends in zeolite NaY[J].Studies in Surface Science and Catalysis,1995,94:346-380.
[12] Huang G J,Chen Z G,Li M D.Surface functional modification of graphene and graphene oxide[J].Acta Chimica Sinica,2016,74:789-799.
[13] Guo L,Lu M,Li Q,et al.A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis[J].International Journal of Hydrogen Energy,2015,40(1):197-208.
[14] Zhou Q,Zou Z H,Xie L,et al.Seed sludge pretreatment for fermentative biohydrogen[J].Journal of Tongji University (Natural Science),2010,38(7):1029-1035.
[15] Wagner R C,Call D F,Logan B E.Optimal set anode potentials vary in bioelectrochemical systems[J].Environmental Science & Technology,2010,44(16):6036-6041.
[1] 白玉峰, 何小芳, 康冬冬, 蔡国辉, 吴梦林. 石墨烯/聚吡咯复合材料制备及应用研究进展[J]. 化工新型材料, 2019, 47(5): 5-9.
[2] 郭准, 于菲, 赵阳, 赵玉真. 原位聚合法制备石墨烯/聚酰亚胺复合材料及其性能[J]. 化工新型材料, 2019, 47(5): 73-76.
[3] 王趁义, 王国贺, 王凤玲, 郝琦玮, 瞿帆. 氧化石墨烯改性聚(丙烯酸/丙烯酰胺)高吸水树脂的制备及性能研究[J]. 化工新型材料, 2019, 47(5): 90-95.
[4] 邓雪莹, 李丽华, 张金生, 吴限, 马诚. GO改性ZnO/CeO2复合纳米光催化剂的制备及其光催化性能研究[J]. 化工新型材料, 2019, 47(5): 185-189.
[5] 张军丽, 闫永康, 张宁. 琥珀酰化壳聚糖/石墨烯复合材料的制备及对酸性品红的吸附[J]. 化工新型材料, 2019, 47(5): 249-252.
[6] 武斌,韩蓉,谢君. 石墨烯制备技术研究进展[J]. 化工新型材料, 2019, 47(4): 17-20.
[7] 钟芬,潘雪江,刘恒全. 改良氧化还原法制备石墨烯及其电学性能研究[J]. 化工新型材料, 2019, 47(4): 67-70.
[8] 李凯迪,王思佳,朱鑫瑞,袁思杰,程雪纯,吴浩然,高阳光,徐书珏,杜记民. MoS2/核桃壳活性炭复合纳米材料的制备及其电催化析氢性能研究[J]. 化工新型材料, 2019, 47(4): 71-75.
[9] 浦旭清,王开松,王佳磊,谢宇,陈介民,沈超,许宁,岳鹿. 硅/石墨烯/碳复合材料的制备及其储锂性能研究[J]. 化工新型材料, 2019, 47(4): 76-80.
[10] 韩银龙,孙文波,田响宇,鲁逸林,韦国科,常彦春. 原位石墨烯包覆金属复合颗粒的制备与表征[J]. 化工新型材料, 2019, 47(4): 84-88.
[11] 吴丁威,温静,郭睿劼. 氧化石墨烯负载阿莫西林的研究[J]. 化工新型材料, 2019, 47(4): 243-245.
[12] 徐海升, 何丽娟, 王豪. 新型石墨烯复合材料的制备及其催化应用研究进展[J]. 化工新型材料, 2019, 47(3): 6-10.
[13] 王林变,赵英虎,高莉,孙友谊,杨柳. 氧化石墨烯-纳米银复合材料的应用研究进展[J]. 化工新型材料, 2019, 47(3): 1-5.
[14] 李潇,黄超美,李绮斌,唐飞,丁娜,张冠南. 基于专利分析的石墨烯技术态势研究[J]. 化工新型材料, 2019, 47(3): 11-14.
[15] 田俊峰,陈哲,韩光鲁,尹志刚. 三维石墨烯/聚苯胺纳米线复合材料合成及室温气敏性能[J]. 化工新型材料, 2019, 47(3): 51-54.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn