Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (5): 42-45    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
基于原子转移自由基聚合的无机纳米粒子表面接枝改性方法研究进展
王雅珍1, 姜圣悦2
1.齐齐哈尔大学材料科学与工程学院,黑龙江省聚合物基复合材料重点实验室,齐齐哈尔161006;
2.齐齐哈尔大学化学与化学工程学院,齐齐哈尔161006
Research progress on surface grafting modification of inorganic nanoparticles based on atom transfer radical polymerization
Wang Yazhen1, Jiang Shengyue2
1.College of Materials Science and Engineering,Qiqihar University,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials,Qiqihar 161006;
2.College of Chemistry and Chemical Engineering,Qiqihar University,Qiqihar 161006
下载:  PDF (1131KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了原子转移自由基聚合法、反向原子转移自由基聚合法、电子转移生成催化剂原子转移自由基聚合法、电子转移活化再生催化剂原子转移自由基聚合法在无机纳米粒子表面接枝聚合物的研究进展,介绍了聚合物接枝改性过程中不同催化体系的特点。采用上述方法在无机纳米粒子表面接枝改性,均能有效控制纳米复合粒子的粒径及其分布,提高纳米粒子的分散性、耐久性和相容性且反应条件简单、可控性强,是前景广阔的聚合方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雅珍
姜圣悦
关键词:  原子转移自由基聚合  无机纳米粒子  改性    
Abstract: The modification methods of grafting polymer on the surface of inorganic nanoparticles via a series of living polymerization include atom transfer radical polymerization (ATRP),reverse ATRP,activators generated by electron transfer ATRP and activators regenerated by electron transfer ATRP were introduced.The characteristics of different catalytic systems of surface modification via ATRP were described.The particle size and distribution of nanocomposites could be effectively controlled and the dispersibility,durability and compatibility of nanoparticles were improved after modification.In addition,the method was simple to reactionary condition and easily controlled,which was promised.
Key words:  atom transfer radical polymerization    inorganic nanoparticle    modification
收稿日期:  2017-08-08                     发布日期:  2019-06-14      期的出版日期:  2019-05-20
基金资助: 国家自然科学基金项目(21376127,U1162123);国家自然基金青年科学基金项目(51103076);齐齐哈尔大学研究生创新项目(YJSCX2017-025X)
作者简介:  王雅珍(1961-),女,博士,教授,博士生导师,研究方向为聚合物高性能化高功能化。
引用本文:    
王雅珍, 姜圣悦. 基于原子转移自由基聚合的无机纳米粒子表面接枝改性方法研究进展[J]. 化工新型材料, 2019, 47(5): 42-45.
Wang Yazhen, Jiang Shengyue. Research progress on surface grafting modification of inorganic nanoparticles based on atom transfer radical polymerization. New Chemical Materials, 2019, 47(5): 42-45.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I5/42
[1] 张立德.纳米材料[M].北京:化学工业出版社,2000:39-50.
[2] 戴立威.高分子/纳米金彩虹薄膜的制备及其智能调控变色的研究[D].北京:中国科学院大学(中国科学院宁波材料技术与工程研究所),2017.
[3] 邓先模,李孝红.生物医用高分子在癌症药物治疗中的应用[J].高分子通报,1999(3):94.
[4] 卢桂霞.碳纳米管/聚合物复合材料的热敏电阻特性研究[D].沈阳:沈阳建筑大学,2011.
[5] 陈耀燃,林勇,陈义中,等.静电自组装制备交联聚苯乙烯纳米微球/石墨烯杂化填料(PS@rGO)及其在丁苯橡胶中的应用研究[J].高分子学报,2016(12):1724-1734.
[6] 贾巧英,马晓燕.纳米材料及其在聚合物中的应用[J].塑料科技,2001(2):6-10.
[7] Wang J S,Matyjaszewski K.Controlled/“living” radical polymerization.Atom transfer radical polymerization in the presence of transition-metal complexes[J].Journal of the American Chemical Society,1995,117(20):5614-5615.
[8] Wang J S,Matyjaszewski K.Controlled/“living” radical polymerization.Halogen atom transfer radical polymerization promoted by a Cu(Ⅰ)/Cu(Ⅱ) redox process[J].Macromolecules,1995,28(23):7901-7910.
[9] Matyjaszewski K,Patten T E,Xia J.Controlled/“living” radical polymerization.Kinetics of the homogeneous atom transfer radical polymerization of styrene[J].Journal of the American Chemical Society,1997,119(4):674-680.
[10] 范保林.ATRP法在纳米SiO2表面接枝聚合物及其应用研究[D].合肥:合肥工业大学,2010.
[11] Huang C,Tassone T,Woodberry K,et al.Impact of ATRP initiator spacer length on grafting poly(methyl methacrylate) from silica nanoparticles[J].Langmuir,2009,25(23):13351-13360.
[12] 张娟.通过原子转移自由基聚合方法制备结构可控的PMMA/SiO2复合粒子[D].成都:四川大学,2007.
[13] Wei L,Xu Y,Yang Z,et al.Silica nanoparticles functionalized via click chemistry and ATRP for enrichment of Pb(Ⅱ) ion[J].Nanoscale Research Letters,2012,7(1):485.
[14] Peng X,Chen Y,Li F,et al.Preparation and optical properties of ZnO@PPEGMA nanoparticles[J].Applied Surface Science,2009,255(16):7158-7163.
[15] He X,Wu X,Cai X,et al.Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties[J].Langmuir,2012,28(32):11929-11938.
[16] Berger S,Synytska A,Ionov L,et al.Stimuli-responsive bicomponent polymer janus particles by “grafting from”/“grafting to” approaches[J].Macromolecules,2008,41(24):9669-9676.
[17] Shanmugharaj A M,Bae J H,Nayak R R,et al.Preparation of poly (styrene-co-acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization[J].Journal of Polymer Science Part A:Polymer Chemistry,2007,45(3):460-470.
[18] 陈会萍.ATRP接枝TiO2对PVDF微滤膜性能影响[D].大连:大连理工大学,2012.
[19] Xiong L,Liang H,Wang R,et al.A novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP[J].Journal of Polymer Research,2011,18(5):1017-1021.
[20] Wang G,Zhu X,Cheng Z,et al.Reverse atom transfer radical polymerizations of methyl methacrylate with FeCl3/pyromellitic acid[J].European Polymer Journal,2003,39(11):2161-2165.
[21] Xia J,Matyjaszewski K.Controlled/“living” radical polymerization.Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator[J].Macromolecules,1997,30(25):7692-7696.
[22] 郭爽,颜培力,马铁成.反向原子转移自由基法制备SiO2/PMMA复合粒子[J].大连工业大学学报,2008,27(1):54-57.
[23] 赵淑芳.反向原子转移自由基聚合修饰纳米SiC的研究[D].唐山:河北理工大学,2010.
[24] Wang Y,Xiao Y,Huang X,et al.Preparation of poly (methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP[J].Journal of Colloid and Interface Science,2011,360(2):415-421.
[25] Jakubowski W,Matyjaszewski K.Activator generated by electron transfer for atom transfer radical polymerization[J].Macromolecules,2005,38(10):4139-4146.
[26] Tang F,Zhang L,Zhu J,et al.Surface functionalization of chitosan nanospheres via surface-initiated AGET ATRP mediated by iron catalyst in the presence of limited amounts of air[J].Industrial & Engineering Chemistry Research,2009,48(13):6216-6223.
[27] Zhang L,Zhou G,Sun B,et al.Tunable shell thickness in silica nanospheres functionalized by a hydrophobic PMMA-PSt diblock copolymer brush via activators generated by electron transfer for atom transfer radical polymerization[J].Macromolecular Chemistry & Physics,2013,214(14):1602-1611.
[28] Jakubowski W,Min K,Matyjaszewski K.Activators regenerated by electron transfer for atom transfer radical polymerization of styrene[J].Macromolecules,2006,39(1):39-45.
[29] Zhao M,Zhou G,Zhang L,et al.Fabrication and photoactivity of a tunable-void SiO2-TiO2 core-shell structure on modified SiO2 nanospheres by grafting an amphiphilic diblock copolymer using ARGET ATRP[J].Soft Matter,2013,10(8):1110-1120.
[30] Cheesman B T,Willott J D,Webber G B,et al.pH-responsive brush-modified silica hybrids synthesized by surface-initiated ARGET ATRP[J].ACS Macro Letters,2012,1(10):1161-1165.
[1] 杨统林, 赵中华, 肖建军, 王海坤, 杨方麒, 邱祖民. 纳米材料的改性及其在涂料中的应用研究进展[J]. 化工新型材料, 2019, 47(5): 10-13.
[2] 赵富强, 陈俊英, 夏传俊, 李天聪, 黄霞. 杂化小直径血管组织工程支架基材的共混改性与相容性分析[J]. 化工新型材料, 2019, 47(5): 77-80.
[3] 孙晚莹, 伍海明, 徐志伟. 聚丙烯腈纳米纤维正渗透支撑层的表面改性研究[J]. 化工新型材料, 2019, 47(5): 104-108.
[4] 张正中, 唐秋凡, 邓重清, 蔚红建, 刘晓军. 不同粒度及包覆改性高氯酸铵的热分解性能和安全性能研究[J]. 化工新型材料, 2019, 47(5): 160-163.
[5] 赵娜英, 卞洁鹏, 杨雪健, 杨庆浩. 溶胶-凝胶法制备掺镧改性纳米MnO2[J]. 化工新型材料, 2019, 47(5): 164-166.
[6] 周先波,陈嘉磊,胡亚一,刘琦,陈晨. 纳米氧化锌的改性及其光催化降解性能研究进展[J]. 化工新型材料, 2019, 47(4): 47-52.
[7] 王文远,杨凤,高瑞横,焦健,方庆红. 基于天然橡胶的自修复弹性体材料的合成及性能研究[J]. 化工新型材料, 2019, 47(4): 53-57.
[8] 史可,张晶,苏婷婷,王战勇. 生物可降解塑料的改性研究进展[J]. 化工新型材料, 2019, 47(4): 29-33.
[9] 浦旭清,王开松,王佳磊,谢宇,陈介民,沈超,许宁,岳鹿. 硅/石墨烯/碳复合材料的制备及其储锂性能研究[J]. 化工新型材料, 2019, 47(4): 76-80.
[10] 李盛鹏,蔡宗鹏,刘观日,房鑫,刘长志,王智,王会平,范书群,侯传金,刘彦军. 有机硅改性三氟氯乙烯氟树脂乳液的研究[J]. 化工新型材料, 2019, 47(4): 100-103.
[11] 王宇航,姜梦培,吴红军. N,α-Fe2O3共掺杂TiO2纳米管阵列的制备及其光电催化还原CO2性能研究[J]. 化工新型材料, 2019, 47(4): 104-107.
[12] 赵秀琴,向乾坤. Zn掺杂改性TiO2的制备及其光催化性能研究[J]. 化工新型材料, 2019, 47(4): 194-195.
[13] 左克曼,李建,管庆顺,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 疏水型气凝胶的制备及应用[J]. 化工新型材料, 2019, 47(4): 217-221.
[14] 赵洪凯,陈健. 纤维素基可降解吸水材料的研究与发展[J]. 化工新型材料, 2019, 47(4): 239-242.
[15] 曹雪娟,毛鑫勃,胡森,李晓燕. 煤沥青及改性煤沥青研究应用进展[J]. 化工新型材料, 2019, 47(4): 222-225.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn