Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (4): 34-37    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
热塑性高分子材料增韧机理研究进展
夏学莲,史向阳,赵海鹏,赵振新,郭靖怡,董英英
河南城建学院材料与化工学院,平顶山467036
A review of toughening mechanism of thermoplastic polymer material
Xia Xuelian, Shi Xiangyang, Zhao Haipeng, Zhao Zhenxin, Guo Jingyi, Dong Yingying
School of Materials and Chemical Engineering,Henan University of Urban Construction, Pingdingshan 467036
下载:  PDF (1126KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 热塑性高分子材料的增韧对拓宽脆性树脂的应用起着至关重要的作用。有关热塑性高分子材料增韧改性的研究已有大量报道,学者对增韧效果的影响因素进行了研究,并针对某一种增韧剂在特定树脂中的增韧机理进行探讨,但未见系统性阐述热塑性高分子材料增韧机理的相关报道。热塑性高分子材料增韧机理的研究对实际改性过程中增韧剂种类的选择、添加量的控制、增韧效果的提高等具有理论指导意义。介绍了受控液体银纹化、弹性体增韧、刚性粒子增韧和协同增韧等多种增韧机理,对比了各机理之间的异同,指明了增韧机理的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏学莲
史向阳
赵海鹏
赵振新
郭靖怡
董英英
关键词:  热塑性高分子材料  增韧  共混  增韧机理    
Abstract: The toughness of thermoplastic polymer plays an important role in expanding the application of brittle resin.A large number of researches revealed toughening modification of thermoplastic polymer,and studied the effect of various factors on toughening effect.A small part of reports explored toughening mechanism of a certain toughening agent in toughening a certain polymer.There is no systematic report on the toughening mechanism of thermoplastic polymer materials.The toughening mechanism of liquid,elastomer,rigid particle and synergistic effect were discussed,and the differences between the mechanisms were compared.
Key words:  thermoplastic polymer material    toughening    blend    toughening mechanism
                    发布日期:  2019-05-20      期的出版日期:  2019-05-20
作者简介:  夏学莲(1987-),女,博士,讲师,主要从事高分子材料的合成与改性工作。
引用本文:    
夏学莲,史向阳,赵海鹏,赵振新,郭靖怡,董英英. 热塑性高分子材料增韧机理研究进展[J]. 化工新型材料, 2019, 47(4): 34-37.
Xia Xuelian, Shi Xiangyang, Zhao Haipeng, Zhao Zhenxin, Guo Jingyi, Dong Yingying. A review of toughening mechanism of thermoplastic polymer material. New Chemical Materials, 2019, 47(4): 34-37.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I4/34
[1] Ru J F,Yang S G,Zhou D,et al.Dominant β-form of poly(L-lactic acid) obtained directly from melt under shear and pressure fields[J].Macromolecules,2016,49(10):3826-3837.
[2] Peng N,Ju Y,Lv R,et al.Toughening biodegradable polylactide with nanopores[J].J Polym Res,2016,23:261.
[3] Yang Y,Zhang L,Xiong Z,et al.Research progress in the heat resistance,toughening and filling modification of PLA[J].Sci China Chem,2016,59(11):1355-1368.
[4] Yang Y,Yu W,Duan H,et al.Realization of reinforcing and toughening poly (phenylene sulfide) with rigid silica nanoparticles[J].J Polym Res,2016,23:188.
[5] Wen T,Guo Y,Song S,et al.Inhibited transesterification on the properties of reactive core-shell particles toughened poly(butylene terephthalate) and polycarbonate blends[J].J Polym Res,2015,22:222.
[6] Gu L,Wu Q,Yu H.Toughening of poly(propylene carbonate) by carbon dioxide copolymer poly(urethane-amine) via hydrogen bonding interaction[J].Chinese J Polym Sci,2015,33(6):838-849.
[7] Shi F,Zhong M,Zhang L,et al.Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking-the roles of the dual crosslin-king points[J].Chinese J Polym Sci,2017,35(1):25-35.
[8] Zhang G,Ye L.Toughening of polyvinyl alcohol hydrogel through co-crosslinking and its wastewater treatment performance by immobilizing with microorganism[J].J Polym Environ,2017,25(2):229-240.
[9] Kim Y,Bae J W,Lee C S,et al.Morphology and mechanical properties of polyketone blended with polyamide and ethy-lene-octene rubber[J].Macromol Res,2015,23(10):971-976.
[10] Gebizlioglu O S,Beckham H W,Argon A S,et al.A new mechanism of toughening glassy polymers.1.experimental procedures[J].Macromolecules,1990,23(17):3968-3974.
[11] Zubrowska A,Piorkowska E,Kowalewska A,et al.Novel blends of polylactide with ethylene glycol derivatives of POSS[J].Colloid Polym Sci,2015,293:23-33.
[12] Zhou Q Y,Argon A S,Cohen R E.Enhanced case-Ⅱ diffusion of diluents into glassy polymers undergoing plastic flow[J].Polymer,2001,42(2):613-621.
[13] 何亮.丙烯酸酯橡胶增韧脆性聚合物的研究[D].长春:长春工业大学,2013.
[14] Kowalczyk M,Piorkowska E.Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends[J].J Appl Polym Sci,2012,124(6):4579-4589.
[15] Hao Y,Yang H,Zhang H,et al.The simultaneous introduction of low and high molecular weight of biodegradable poly(diethylene glycol adipate)s to plasticize and toughen polylactide[J].Fiber Polym,2015,16(12):2519-2528.
[16] Jiang L,Wolcott M P,Zhang J.Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends[J].Biomacromolecules,2006,7(1):199-207.
[17] Li Y,Shimizu H.Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer[J].Macromol Biosci,2007,7(7):921-928.
[18] 周昌伟.ASA/PVC合金及其复合材料的制备与性能研究[D].杭州:浙江工业大学,2015.
[19] Liang J Z,Duan D R,Tang C Y,et al.Mechanical properties and morphology of poly(L-lactic acid)/nano-CaCO3 compo-sites[J].J Polym Environ,2015,23(1):21-29.
[20] 石璞,陈浪,钟苗苗.高组分纳米碳酸钙填充聚丙烯及增韧机理[J].高分子材料科学与工程,2015,31(10):69-74.
[21] 王如寅.聚乳酸增韧改性及其机理研究[D].上海:上海交通大学,2009.
[22] 吴唯,徐种德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究[J].高分子学报,2000(1):99-104.
[23] 邹俊.聚乳酸及其纳米复合材料的研究[D].上海:华东理工大学,2011.
[24] 陈鹏鹏.多尺度有机硅基纳米材料改性聚合物[D].南京:南京大学,2013.
[25] Liang J Z,Ruan J Q,Li B.Effects of the surface treatment of wollastonite on the tensile and flow properties for reinforced polypropylene composites[J].J Polym Eng,2014,34(7):649-655.
[26] Liang J Z,Li B,Ruan J Q.Crystallization properties and thermal stability of polypropylene composites filled with wollastonite[J].Polym Test,2015,42:185-191.
[27] Han L,Han C,Dong L.Effect of crystallization on microstructure and mechanical properties of poly[(ethylene oxide)-block-(amide-12)]-toughened poly(lactic acid) blend[J].Polym Int,2013,62(2):295-304.
[28] Xia X,Liu W,Zhou L,et al.Study on flax fiber toughened poly (lactic acid) composites[J].J Appl Polym Sci,2015,132(38):42573.
[29] Zhang K,Nagarajan V,Misra M,et al.Supertoughened renewable PLA reactive multiphase blends system:phase morphology and performance[J].ACS Appl Mater Inter,2014,6(15):12436-12448.
[30] Wang Y,Chen K,Xu C,et al.Supertoughened biobased poly (lactic acid)-epoxidized natural rubber thermoplastic vulcanizates:fabrication,co-continuous phase structure,interfacial in situ compatibilization,and toughening mechanism[J].J Physic Chem,2015,119(36):12138-12146.
[31] Wu N,Zhang H.Toughening of poly (L-lactide) modified by a small amount of acrylonitrile-butadiene-styrene core-shell copolymer[J].J Appl Polym Sci,2015,132:39.
[1] 孙晨露,刘喜军,白小杰. PDMS-PEG增韧改性PLA及其共混物性能研究[J]. 化工新型材料, 2019, 47(4): 58-62.
[2] 闫丽,安学锋. “离位”增韧ES-U3160/5284复合材料的制备及性能研究[J]. 化工新型材料, 2019, 47(4): 167-170.
[3] 赵洪凯,张克含,陈健. 纤维素和壳聚糖共混吸水材料的研究与发展[J]. 化工新型材料, 2019, 47(3): 26-30.
[4] 杨亚红,招扬,朱天旭,胡家玮. 多壁碳纳米管/Fe3O4/SiO2/聚氯乙烯共混膜的制备及性能研究[J]. 化工新型材料, 2019, 47(3): 62-66.
[5] 汪胜, 孙俭, 刘德尧, 李敏超. 新型无孔透湿TPU薄膜的制备及其服用性能研究[J]. 化工新型材料, 2019, 47(1): 220-224.
[6] 童伟, 何辛, 高晟弢, 王蓉, 周心怡, 吴蓁. 二聚酸二缩水甘油酯及其改性胺环氧固化剂的制备[J]. 化工新型材料, 2019, 47(1): 177-180.
[7] 吴淑芳, 蚁明浩, 陈循军, 葛建芳, 黎新明. 高分子材料阻隔性能的研究进展[J]. 化工新型材料, 2019, 47(1): 24-27.
[8] 白桢慧, 苏婷婷, 李萍, 王战勇. 聚对苯二甲酸丁二醇酯改性研究进展[J]. 化工新型材料, 2018, 46(9): 41-44.
[9] 张瑞珠, 贾新杰, 李林杰, 王重洋. 环氧树脂的增韧研究进展[J]. 化工新型材料, 2018, 46(9): 21-24.
[10] 王大伟, 段长兵, 王宝铭. 纳米陶瓷粉改性环氧树脂研究[J]. 化工新型材料, 2018, 46(7): 168-169.
[11] 吴珍珍, 张琳萍, 徐红, 钟毅, 隋晓锋, 毛志平. 纤维素微纤气凝胶增强聚合物复合材料研究[J]. 化工新型材料, 2018, 46(5): 177-180.
[12] 王克, 王凯, 俞强, 陈强, 徐华. 4,4′-二氨基二苯甲烷改性氧化石墨烯/环氧树脂复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(4): 70-73.
[13] 马志燕, 王彦, 诸静, 于俊荣, 胡祖明,. 离子液体改性含二硫键生物质环氧树脂的性能研究[J]. 化工新型材料, 2018, 46(3): 100-102.
[14] 李荣哲, 刘昆林, 徐敏, 李学锋, 彭少贤, 赵西坡. 聚乳酸木塑复合材料增韧研究进展[J]. 化工新型材料, 2018, 46(2): 247-251.
[15] 杨坤, 李晓云, 李绩, 牛浩, 姚亮, 王宏斌, 李万捷. 水性聚氨酯环氧固化剂合成因素及对环氧固化物的增韧作用探讨[J]. 化工新型材料, 2018, 46(12): 190-192.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn