Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (3): 172-176    
  科学研究 本期目录 | 过刊浏览 | 高级检索 |
介孔石墨相氮化碳载银光催化抗菌性能研究
刘姿铔,董小梅,张曼莹*
江苏理工学院化学与环境工程学院,常州213001
Ag modified m-g-C3N4 composite with photocatalytic and antibacteral performance
Liu Ziya, Dong Xiaomei, Zhang Manying
School of Chemical and Environmental Engineering,Jiangsu University of Technology, Changzhou 213001
下载:  PDF (2715KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氯化铵为气泡模板,三聚氰胺为石墨相氮化碳前驱体,采用光沉积法构筑介孔石墨相氮化碳载银(Ag)(m-g-C3N4/Ag)催化剂。并对m-g-C3N4/Ag的晶体结构、化学组成和形貌进行表征。考察了Ag含量对m-g-C3N4/Ag光降解性能和抗菌性能的影响。研究结果表明,制得的m-g-C3N4/Ag具有介孔结构,随着催化剂中Ag含量的增多,光降解能力明显提升,Ag浓度为160mg/g的m-g-C3N4/Ag对甲基橙(MO)的降解效果最好,在降解35min条件下,最高降解率为82%。m-g-C3N4/Ag对铜绿假单胞菌的抗菌效果优于对大肠杆菌的抗菌效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘姿铔
董小梅
张曼莹
关键词:  介孔石墨相氮化碳载银  光降解  抗菌性    
Abstract: The mesoporous g-C3N4/Ag (m-g-C3N4/Ag) composites were obtained by photodeposition method employing ammonium chloride as gaseous bubble template and melamine as g-C3N4 precursor.The crystalline structures,molar structures and morphology were characterized.The effects of silver content on the photocatalytic performance and antibacterial activity of samples were studied.The results showed that the prepared catalysts had mesporous structure.The photocatalytic performances were promoted with the increase of Ag content.M-g-C3N4/Ag with Ag concentration of 160mg/g had the best degradation effect on MO.Under 35min degradation,the highest degradation rate was 82%.The antibacterial activity of m-g-C3N4/Ag to P.aeruginosa was more obvious than that to E.coli.
Key words:  M-g-C3N4/Ag    photodegradation    antibacterial property
               出版日期:  2019-03-20      发布日期:  2019-03-20      期的出版日期:  2019-03-20
基金资助: 国家自然科学基金青年基金(51508239);江苏省自然科学基金(BK20150245,BY2016030-01);江苏省研究生科研与实践创新计划项目(SJCX17-0772)
通讯作者:  张曼莹(1987-),女,博士,讲师,主要研究方向为抗污染膜材料制备及应用。   
作者简介:  刘姿铔(1994-),女,硕士,主要研究方向为新型抗污染膜材料制备及应用。
引用本文:    
刘姿铔,董小梅,张曼莹. 介孔石墨相氮化碳载银光催化抗菌性能研究[J]. 化工新型材料, 2019, 47(3): 172-176.
Liu Ziya, Dong Xiaomei, Zhang Manying. Ag modified m-g-C3N4 composite with photocatalytic and antibacteral performance. New Chemical Materials, 2019, 47(3): 172-176.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I3/172
[1] 吴晓红.我国水污染现状及治理措施[J].环境与发展,2017,29(3):80-81.
[2] 江曙光.中国水污染现状及防治对策[J].水产科技情报,2010,37(4):313-315.
[3] 陈潮炎,张侠.可见光光催化降解在有机污染防治中的应用[J].中国资源综合利用,2016,34(9):39-43.
[4] Chehadi Z,Alkees N,Bruyant A,et al.Plasmonic enhanced photocatalytic activity of semiconductors for the degradation of organic pollutants under visible light[J].Materials Science in Semiconductor Processing,2016,42(17):81-84.
[5] Jaafar N F,Jalil A A,Triwahyono S,et al.Significant effect of ph on photocatalytic degradation of organic pollutants using semiconductor catalysts[J].2016,78(8):7-12.
[6] Mamba G,Mishra A K.Graphitic carbon nitride (g-C3N4) nanocompostes:a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J].Applied Catalysis B(Environmental),2016,198:347-377.
[7] Yan S C,Li Z S,Zou Z G.Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J].Langmuir,2009,25(17):10397-10401.
[8] Sun J X,Yuan Y P,Qiu L G,et al.Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J].Dalton Transactions,2012,41(22):6756-6764.
[9] Li Y,Jin R,Fang X,et al.In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance[J].J Hazard Mater,2016,313:219-228.
[10] Lei J,Chen Y,Shen F,et al.Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity[J].Journal of Alloys and Compounds,2015,631:328-334.
[11] Fontelles-Carceller O,Munoz-Batista M J,Fernandez-Garcia M,et al.Interface effects in sunlight-driven Ag-g-C3N4 composite catalysts study of the toluene photodegradation quantum efficiency[J].ACS Appl Mater Interfaces,2016,8(4):2617-2627.
[12] 王艳环,郭强,姜涛,等.介孔石墨相氮化碳制备及其催化应用研究进展[J].人工晶体学报,2016,45(11):2693-2700.
[13] Ma S,Zhan S,Jia Y,et al.Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light[J].Applied Catalysis B:Environmental,2016,186:77-87.
[14] Faisal M,Ismail A A,Harraz F A,et al.Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity[J].Materials & Design,2016,98:223-230.
[15] 谢小保,李文茹,曾海燕,等.纳米银对大肠杆菌的抗菌作用及其机制[J].材料工程,2008(10):106-109.
[16] 罗阳,张波,陈鸣,等.纳米银颗粒体外杀灭铜绿假单胞菌效应研究[J].中华医院感染学杂志,2012,22(16):3441-3443.
[17] 陈飞飞,陈芳艳,王叶云,等.纳米银灭菌机制及应用研究进展[J].安徽农业科学,2016,44(9):28-30.
[18] Iqbal W,Dong C,Xing M,et al.Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity[J].Catalysis Science & Technology,2017,7(8):1726-1734.
[19] Meng Y,Shen J,Chen D,et al.Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst[J].Rare Metals,2011,30(1):276-279.
[20] 高晓春.改性g-C3N4的制备及其光降解甲基橙性能的研究[D].济南:山东大学,2016.
[21] Zhang M,Field R W,Zhang K.Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties[J].Journal of Membrane Science,2014,471:274-284.
[22] Sintubin L,Gusseme B D,Meeren P V D,et al.The antibacterial activity of biogenic silver and its mode of action[J].Applied Microbiology & Biotechnology,2011,91(1):153-157.
[23] 黄建辉,林文婷,谢丽燕,等.石墨相氮化碳-碘氧化铋层状异质结的构建及其光催化杀菌性能[J].环境科学,2017,38(9):1-9.
[24] Zhang W,Zhou L,Deng H.Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation[J].Journal of Molecular Catalysis A,Chemical,2016,423:270-276.
[25] 李新斌,于萍,李国强,等.Ag/g-C3N4复合光催化材料的光物理及光催化性能[J].化工新型材料,2014,42(5):83-85.
[26] Liu L,Qi Y,Lu J,et al.A stable Ag3PO4@ g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation.pdf[J].Applied Catalysis B(Environmental),2016,183:133-141.
[27] 沈婷婷.银基/石墨相氮化碳复合光催化材料的制备及其可见光催化性能研究[D].武汉:华中农业大学,2016.
[28] Kora A J,Sashidhar R B,Arunachalam J.Aqueous extract of gum olibanum (boswellia serrata):a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles[J].Process Biochemistry,2012,47(10):1516-1520.
[1] 李珊珊, 万思康, 郭梦雅, 杨阳, 鲁鹏. 石墨烯/ZnO纳米复合物的制备及其抗菌性能研究[J]. 化工新型材料, 2019, 47(2): 268-271.
[2] 李莎, 王赛, 牛梅, 邱丽. 纳米银抗菌防雾霾口罩的设计与性能测试研究[J]. 化工新型材料, 2019, 47(2): 247-255.
[3] 朱丽霞, 代金月, 陈来, 王玉彬, 朱锦, 那海宁. 基于双咪唑离子介质制备高抗菌性聚氨酯的研究[J]. 化工新型材料, 2018, 46(3): 111-114.
[4] 唐兴兴, 袁军, 江学良, 赵雷, 张富青. 不同形貌ZnO的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(2): 197-200.
[5] 张曼莹, 刘姿铔, 邬艳君. 生物纳米银/聚醚砜复合膜的制备及性能研究[J]. 化工新型材料, 2018, 46(12): 99-103.
[6] 李子成,杨涛,陆丽晨,周维君,韩书广. 光降解催化剂及其应用研究进展[J]. 化工新型材料, 2018, 46(10): 57-62.
[7] 彭文俊, 蒋之铭, 罗雨霓, 刘敏, 刘阳, 李蓉, 任学宏, 黄东时. 超声波在卤胺抗菌纤维素纤维上的应用[J]. 化工新型材料, 2018, 46(1): 218-222.
[8] 梁雪, 张蓉, 王淑瑶, 刘耀文. 静电纺丝制备聚乳酸复合纤维的抗菌性能研究现状[J]. 化工新型材料, 2018, 46(1): 29-32.
[1] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[2] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
[3] Cai Tingting, Liu Rongwei, Wang Yuanyuan, Zhai Yongxing, Duan Ze, Zhang Jian. Preparation and electrochemical performance test of nickel cobalt sulfide/carbon microsphere electrode[J]. New Chemical Materials, 2018, 46(8): 119 -122 .
[4] Li Yonggang, Feng Pan, Yu Xiaohua, Yu Shuanglin, Xu Yafei, He Xiaocai, Xie Gang. Electrochemical property of graphene with different reducing agent[J]. New Chemical Materials, 2019, 47(1): 92 -95 .
[5] Li Yongjian, Dai Haipo, Li Jiwei, Feng Nana, Zhai Hui, Li Wei. Research progress of several transition metal oxides nanomaterials in non-enzymatic glucose sensor[J]. New Chemical Materials, 2019, 47(2): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn