Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (3): 211-215    
  科学研究 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯对亚甲基蓝的可见光催化降解
刘洋洋1,顾宝珊1*,郑艳银1,2,梁东明1,杨培燕1,张启富1
1.中国钢研科技集团有限公司先进金属材料涂镀国家工程实验室,北京100081;
2.河北科技大学材料科学与工程学院,石家庄050000
Degradation of methylene blue by graphene oxide under visible-light irradiation
Liu Yangyang1,Gu Baoshan1,Zheng Yanyin1,2,Liang Dongming1,Yang Peiyan1,Zhang Qifu1
1.New Metallurgy High-Tech Group Co.,Ltd.,Beijing 100081;
2.School of Materials Science and Engineering,Hebei University of Science & Technology,Shijiazhuang 050000
下载:  PDF (3178KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 用改良的Hummers法制得了氧化石墨烯,对其微观形貌、成分和结构进行了表征,并使用亚甲基蓝溶液测试其光催化效率。通过SEM、TEM、Raman分析表明,得到的是少层氧化石墨烯,碳氧原子数比在3∶1左右。荧光共聚焦光谱显示,所得到的氧化石墨烯在420~700nm的光波谱范围内都有特征吸收峰。氧化石墨烯能够迅速吸附亚甲基蓝分子,然后对其进行光催化降解,在亚甲基蓝浓度为40mg/L、氧化石墨烯浓度为10mg/L时,降解率能达到40%。之后,初步探究了氧化石墨烯的光催化机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋洋
顾宝珊
郑艳银
梁东明
杨培燕
张启富
关键词:  氧化石墨烯  亚甲基蓝  可见光催化  羟基自由基    
Abstract: The graphene oxide was prepared by modified Hummer method.Its microstructure,composition and structure were characterized and the photocatalytic efficiency was tested using methylene blue solution.SEM,TEM and raman analysis showed that few layer graphene oxide was obtained,and the ratio of carbon to oxygen was about 3∶1.Fluorescence confocal spectroscopy showed that the dispersion of graphene oxide had characteristic absorption peaks in the range of 420~700nm.It was found that the methylene blue molecule was rapidly adsorbed then degraded by the graphene oxide under visible light.The degradation efficiency could reach 40% when the catalyst concentration was 10mg/L and the concentration of methylene blue was 40mg/L.Its photocatalytic mechanism was also discussed then.
Key words:  graphene oxide    methylene blue    visible-light catalysis    hydroxyl radical
               出版日期:  2019-03-20      发布日期:  2019-03-20      期的出版日期:  2019-03-20
通讯作者:  顾宝珊,博士,教授。   
作者简介:  刘洋洋(1991-),男,硕士研究生,主要从事石墨烯材料研究。
引用本文:    
刘洋洋, 顾宝珊, 郑艳银, 梁东明, 杨培燕, 张启富. 氧化石墨烯对亚甲基蓝的可见光催化降解[J]. 化工新型材料, 2019, 47(3): 211-215.
Liu Yangyang, Gu Baoshan, Zheng Yanyin, Liang Dongming, Yang Peiyan, Zhang Qifu. Degradation of methylene blue by graphene oxide under visible-light irradiation. New Chemical Materials, 2019, 47(3): 211-215.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I3/211
[1] Shannon M A,Bohn P W,Elimelech M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-10.<br />
[2] Ministry of Environmental Protection of the People's Republic of China.2016 Report on the state of environment in China[R/OL].Beijing Ministry of Environmental Protection of the People's Republic of China,2017.<br />
[3] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37.<br />
[4] Fujishima A,Zhang X,Tryk D A.Heterogeneous photocatalysis:from water photolysis to applications in environmental cleanup[J].International Journal of Hydrogen Energy,2007,32(14):2664-2672.<br />
[5] Pinna M V,Pusino A.Direct and indirect photolysis of cyhalofop in aqueous systems[J].Chemosphere,2011,82(6):817-821.<br />
[6] Marinho B A,de Liz M V,Lopes Tiburtius E R,et al.TiO<sub>2</sub> and ZnO mediated photocatalytic degradation of E2 and EE2 estrogens[J].Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association & the European Society for Photobiology,2013,12(4):678-83.<br />
[7] An W J,Wang W N,Ramalingam B,et al.Enhanced water photolysis with Pt metal nanoparticles on single crystal TiO<sub>2</sub> surfaces[J].Langmuir,2012,28(19):7528-7534.<br />
[8] Xu J,Teng F,Xu C,et al.Unique anatase TiO<sub>2</sub> twinning crystals formed by high-energy {001} facets and the improved photocatalytic activity[J].Journal of Physical Chemistry C,2015,119(23):13011-13020.<br />
[9] Pelaez M,Nolan N T,Pillai S C,et al.A review on the visible light active titanium dioxide photocatalysts for environmental applications[J].Applied Catalysis B Environmental,2012,125(33):331-349.<br />
[10] Vinodgopal K,Kamat P V.Enhanced rates of photocatalytic degradation of an azo dye using SnO<sub>2</sub>/TiO<sub>2</sub> coupled semiconductor thin films[J].Environmental Science & Technology,1995,29(3):841-5.<br />
[11] Tobiska W K.Developments in modeling solar 2000 VUV irradiances associated with the atmosphere and ionosphere[J].Spacewx Com,2004.<br />
[12] Yang L X.High efficient photocatalytic degradation of p-nitrophenol on a unique Cu<sub>2</sub>O/TiO<sub>2</sub> p-n heterojunction network catalyst[J].Environmental Science & Technology,2010,44(19):7641-6.<br />
[13] Morawski A W,Kusiak-Nejman E,Wanag A,et al.Photocatalytic degradation of acetic acid in the presence of visible light-active TiO<sub>2</sub>-reduced graphene oxide photocatalysts[J].Catalysis Today,2017,280:108-113.<br />
[14] Beura R,Thangadurai P.Structural,optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions[J].Journal of Physics & Chemistry of Solids,2017,102:168-177.<br />
[15] Parameshwari R,Jothivenkatachalam K,Banks C E,et al.Acid-free co-operative self-assembly of graphene-ZnO nanocomposites and its defect mediated visible light photocatalytic activities[J].Physica B Condensed Matter,2017,506:32-41.<br />
[16] Lee J E,Khoa N T,Kim S W,et al.Fabrication of Au/GO/ZnO composite nanostructures with excellent photocatalytic performance[J].Materials Chemistry & Physics,2015,164:29-35.<br />
[17] Pawar R C,Lee C S.Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts[J].Applied Catalysis B Environmental,2014,144(1):57-65.<br />
[18] Sun H,Liu S,Liu S,et al.A comparative study of reduced graphene oxide modified TiO<sub>2</sub>,ZnO and Ta<sub>2</sub>O<sub>5</sub>,in visible light photocatalytic/photochemical oxidation of methylene blue[J].Applied Catalysis B Environmental,2014,146(3):162-168.<br />
[19] Dubey P K,Tiwari R S,Tripathi P,et al.Synthesis of reduced graphene oxide-TiO<sub>2</sub> nanoparticle composite systems and its application in hydrogen production[J].International Journal of Hydrogen Energy,2014,39(29):16282-16292.<br />
[20] Yeh T F,Syu J M,Cheng C,et al.Graphite oxide as a photocatalyst for hydrogen production from water[J].Advanced Functional Materials,2010,20(14):2255-2262.<br />
[21] Yeh T F,Chan F F,Hsieh C T,et al.Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination:the band positions of graphite oxide[J].Journal of Physical Chemistry C,2011,115(45):22587-22597.<br />
[22] Jr W S H,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.<br />
[23] Su C Y,Lu A Y,Xu Y,et al.High-quality thin graphene films from fast electrochemical exfoliation[J].Acs Nano,2011,5(3):2332-9.<br />
[24] Lei Y,Chen F,Luo Y,et al.Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions[J].Chemical Physics Letters,2014,593(6):122-127.<br />
[25] Zhang W,Zhou C,Zhou W,et al.Fast and considerable adsorption of methylene blue dye onto graphene oxide[J].Bull Environ Contam Toxicol,2011,87(1):86-90.
[1] 王林变,赵英虎,高莉,孙友谊,杨柳. 氧化石墨烯-纳米银复合材料的应用研究进展[J]. 化工新型材料, 2019, 47(3): 1-5.
[2] 田蕾,张钱丽,魏杰. 石墨烯-水凝胶改性Ti/TNTs-Sb-SnO2电极的电催化性能研究[J]. 化工新型材料, 2019, 47(3): 94-98.
[3] 郭翠宝, 李海阔, 张天骄. 氧化石墨烯改性聚醚砜纤维膜的制备及性能研究[J]. 化工新型材料, 2019, 47(2): 82-84.
[4] 李冬坤, 单凤君, 王双红. 氧化石墨烯基复合材料对Cr(Ⅵ)的吸附研究[J]. 化工新型材料, 2019, 47(2): 149-153.
[5] 方华, 章婷婷, 王铻葶, 于江华, 曹惠忠. 水中氧化石墨烯稳定性研究[J]. 化工新型材料, 2019, 47(2): 157-161.
[6] 杨松, 赫玉欣, 冯孟婷, 张丽, 刘少祯, 张兴龙, 秦明志, 陈冰, 蒋元力. 改性氧化石墨烯对环氧树脂基复合材料热膨胀系数影响的研究[J]. 化工新型材料, 2019, 47(1): 74-78.
[7] 梁真真, 白绘宇, 张胜文, 王玮, 石刚, 马丕明, 东为富, 刘晓亚. 载银聚乙烯醇/纳米晶纤维素/氧化石墨烯复合膜的制备及性能研究[J]. 化工新型材料, 2019, 47(1): 87-91.
[8] 王海花, 李璐璐, 邵彦明, 费贵强, 让娜娜. 水溶性钛酸酯偶联剂改性石墨烯的制备与性能[J]. 化工新型材料, 2019, 47(1): 96-99.
[9] 罗海燕, 周靖, 张燕娟, 胡华宇, 黄祖强, 沈芳. 氧化石墨烯的制备及其对罗丹明B的吸附性能[J]. 化工新型材料, 2019, 47(1): 172-176.
[10] 张进, 姜婷婷, 蔡君一. Ce掺杂氧化锌的制备及应用研究[J]. 化工新型材料, 2019, 47(1): 252-254.
[11] 梁艺荣, 秦冬玲, 杨刚. 基于氧化石墨烯印迹微球的制备及其对Cu2+的选择性吸附研究[J]. 化工新型材料, 2018, 46(9): 153-156.
[12] 何登良, 张蓝心, 舒小元, 刘树信. 纳米ZnO/电气石复合粉体的制备及其对亚甲基蓝光催化性能的研究[J]. 化工新型材料, 2018, 46(8): 93-96.
[13] 林海亚, 姚成. 氧化石墨烯对氢化二聚酸尼龙力学性能的影响[J]. 化工新型材料, 2018, 46(8): 133-135.
[14] 辛成, 陆少锋, 申天伟, 张永生, 肖超鹏. 高导热性微胶囊相变材料的研究进展[J]. 化工新型材料, 2018, 46(7): 1-4.
[15] 李振光, 于飞, 刘浏, 敖玉辉, 肖凌寒. 碳纤维聚醚醚酮树脂基复合材料的制备及摩擦磨损性能研究[J]. 化工新型材料, 2018, 46(7): 56-59.
[1] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[2] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
[3] Cai Tingting, Liu Rongwei, Wang Yuanyuan, Zhai Yongxing, Duan Ze, Zhang Jian. Preparation and electrochemical performance test of nickel cobalt sulfide/carbon microsphere electrode[J]. New Chemical Materials, 2018, 46(8): 119 -122 .
[4] Li Yonggang, Feng Pan, Yu Xiaohua, Yu Shuanglin, Xu Yafei, He Xiaocai, Xie Gang. Electrochemical property of graphene with different reducing agent[J]. New Chemical Materials, 2019, 47(1): 92 -95 .
[5] Li Yongjian, Dai Haipo, Li Jiwei, Feng Nana, Zhai Hui, Li Wei. Research progress of several transition metal oxides nanomaterials in non-enzymatic glucose sensor[J]. New Chemical Materials, 2019, 47(2): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn