Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (3): 79-83    
  新材料与新技术 本期目录 | 过刊浏览 | 高级检索 |
三维分级多孔结构钴镍复合微球的制备及其电化学性能研究
张改妮,任莉君
宝鸡文理学院化学化工学院,铁电功能材料工程中心,陕西省植物化学重点实验室,宝鸡721013
Preparation and electrochemistry of cobalt-nickel composite microsphere with three-dimensional porous structure
Zhang Gaini ,Ren Lijun
Department of Chemistry and Chemical Engineering,Baoji University of Arts and Sciences, Engineering Research Center of Advanced Ferroelectric Functional Materials, Shaanxi Key Laboratory of Phytochemistry,Baoji 721013
下载:  PDF (5369KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以六水硝酸镍[Ni(NO3)2·6H2O]、六水硝酸钴[Co(NO3)2·6H2O]和尿素[CO(NH2)2]为原料,采用水热法制备了分散性良好且尺寸均一的钴镍复合物微球(CoNi-CM)。独特的三维分级多孔结构有效提高了CoNi-CM在电化学中参与氧化还原反应及电解质离子传输的能力。三电极测试结果表明,CoNi-CM电极材料表现出高比电容、高倍率性能及优异的循环稳定性,有望成为组装高性能超级电容器的备选电极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张改妮
任莉君
关键词:  三维分级结构  钴镍复合物微球  比电容  倍率性能    
Abstract: Cobalt-nickel composite microspheres(CoNi-CM) with good dispersity and uniformity in size were synthesized by hydrothermal method using Ni(NO3)2·6H2O,Co(NO3)2·6H2O and CO(NH2)2 as precursors.The unique three-dimensional architecture greatly improved the faradaic redox reaction and electrolyte ions transfer.The results of electrochemical measurements in three-electrode configuration showed that CoNi-CM electrode exhibited the high specific capacitance,good rate performance and superior cycle stability.CoNi-CM was expected to be the optional electrode material for high performance supercapacitor.
Key words:  three-dimensional architecture    CoNi-CM    specific capacity    rate performance
               出版日期:  2019-03-20      发布日期:  2019-03-20      期的出版日期:  2019-03-20
基金资助: 宝鸡文理学院博士科研启动费项目(ZK2017028;ZK2017031)
作者简介:  张改妮(1985-),女,讲师,主要从事超级电容器电极材料及器件组装研究工作。
引用本文:    
张改妮,任莉君. 三维分级多孔结构钴镍复合微球的制备及其电化学性能研究[J]. 化工新型材料, 2019, 47(3): 79-83.
Zhang Gaini ,Ren Lijun. Preparation and electrochemistry of cobalt-nickel composite microsphere with three-dimensional porous structure. New Chemical Materials, 2019, 47(3): 79-83.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I3/79
[1] Manthiram A,Vadivel Murugan A,Sarkar A,et al.Nanostructured electrode materials for electrochemical energy storage and conversion[J].Energy Environ Sci,2008,2(1):621-638.
[2] Chu S,Majumdar A.Opportunities and challenges for a sustainable energy future[J].Nature,2012,488(7411):294-303.
[3] Liu C,Li F,Ma L P,et al.Advanced materials for energy storage[J].Adv Mater,2010,22(8):E28-E62.
[4] Lin T,Chen I W,Liu F,et al.Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J].Science,2015,350(6267):1508-1513.
[5] Kim H K,Bak S M,Lee S W,et al.Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications[J].Energy Environ Sci,2016,9:1270-1281.
[6] Augustyn V,Simon P,Dunn B.Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J].Energy Environ Sci,2014,7(5):1597-1614.
[7] Shi F,Li L,Wang X L,et al.Metal oxide/hydroxide-based materials for supercapacitors[J].RSC Advances,2014,4(79):41910-41921.
[8] Nagaraju G,Raju G S,Ko Y H,et al.Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers:a cost-effective and flexible electrode for high-performance pseudocapacitors[J].Nanoscale,2016,8(2):812-825.
[9] 谢莉婧,孙国华,谢龙飞,等.基于CoNi-双金属氢氧化物//AC非对称超级电容器的构筑[J].新型炭材料,2016,31(1):37-45.
[10] Liu Y,Fu N,Zhang G,et al.Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors[J].Adv Funct Mater,2017,27(8):1605307.
[11] Leng X,Ding X,Hu J,et al.In situ prepared reduced graphene oxide/CoO nanowires mutually-supporting porous structure with enhanced lithium storage performance[J].Electrochimica Acta,2016,190:276-284.
[12] Coudun C,Hochepied J F.Nickel hydroxide “stacks of pancakes” obtained by the coupled effect of ammonia and template agent[J].J Phys Chem B,2005,109(13):6069-6074.
[13] Liu Z,Ma R,Osada M,et al.Selective and controlled synthesis of α- and β-Cobalt hydroxides in highly developed hexagonal platelets[J].J Amer Chem Soc,2005,127(40):13869-13874.
[14] 严涛,李在均.花瓣状镍钴层状双金属氢氧化物微球的制备及其超级电容性能[J].江南大学学报:自然科学版,2013,12(6):719-724.
[15] Zhang K,Han X P,Hu Z,et al.Nanostructured Mn-based oxides for electrochemical energy storage and conversion[J].Chem Soc Rev,2015,44(3):699-728.
[16] Qi L,Hu X,Qian Y,et al.Electrocapacitive performance of graphene/Co3O4 hybrid material prepared by a nanosheet assembly route[J].Electrochim Acta,2014,119:184-191.
[17] Zhang G,Ren L,Yan Z,et al.Mesoporous-assembled MnO2 with large specific surface area[J].J Mater Chem A,2015,3:14567-14572.
[18] Dong L,Liang G,Xu C,et al.Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage[J].Nano Energy,2017,34:242-248.
[19] Chen H,Hu L,Chen M,et al.Nickel-Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J].Adv Funct Mater,2014,24(7):934-942.
[20] Cheng P,Li T,Yu H,et al.Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J].J Phys Chem C,2016,120(4):2079-2086.
[21] Jing M,Hou H,Banks C E,et al.Alternating voltage introduced NiCo double hydroxide layered nanoflakes for an asymmetric supercapacitor[J].ACS Appl Mater & Inter,2015,7(41):22741-22744.
[22] Wang X,Li X,Du X,et al.Controllable synthesis of NiCo LDH nanosheets for fabrication of high-performance supercapacitor electrodes[J].Electroanalysis,2017,29(5):1286-1293.
[1] 韩迪, 梁兴华, 常清泉, 王云婷, 吴秋满. LiNi0.5Mn1.5O4-Li1.3Al0.3Ti1.7(PO4)3复合正极材料的制备及性能研究[J]. 化工新型材料, 2019, 47(3): 198-202.
[2] 蔚青, 李巧玲. 高比电容氮掺杂石墨烯的制备、组成及电化学性能研究[J]. 化工新型材料, 2019, 47(2): 56-60.
[3] 李子庆, 赫文秀, 张永强, 于慧颖, 李兴盛, 刘斌. 不同温度对石墨烯掺氮位点的影响及性能测试[J]. 化工新型材料, 2018, 46(8): 174-178.
[4] 解静, 李世友, 李春雷, 耿珊, 李宏亮. 高功率型镍锰酸锂正极材料的研究进展[J]. 化工新型材料, 2018, 46(7): 254-257.
[5] 李海红, 王娟, 李红艳, 常华. ZrO2-AC电极材料制备工艺的确定及性能表征[J]. 化工新型材料, 2018, 46(5): 213-217.
[6] 黄慧玲, 潘明珠. 三维分级结构纳米ZnO光催化功能材料的研究进展[J]. 化工新型材料, 2018, 46(4): 27-31.
[7] 王帅, 李廷鱼, 孙雅静, 郭丽芳, 李刚. NiO/TiO2纳米复合电极的制备及电化学性能研究[J]. 化工新型材料, 2018, 46(3): 115-118.
[1] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[2] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
[3] Cai Tingting, Liu Rongwei, Wang Yuanyuan, Zhai Yongxing, Duan Ze, Zhang Jian. Preparation and electrochemical performance test of nickel cobalt sulfide/carbon microsphere electrode[J]. New Chemical Materials, 2018, 46(8): 119 -122 .
[4] Li Yonggang, Feng Pan, Yu Xiaohua, Yu Shuanglin, Xu Yafei, He Xiaocai, Xie Gang. Electrochemical property of graphene with different reducing agent[J]. New Chemical Materials, 2019, 47(1): 92 -95 .
[5] Li Yongjian, Dai Haipo, Li Jiwei, Feng Nana, Zhai Hui, Li Wei. Research progress of several transition metal oxides nanomaterials in non-enzymatic glucose sensor[J]. New Chemical Materials, 2019, 47(2): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn