Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (12): 264-267    
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
MoS2纳米片阵列的制备及其应用现状
王婉秋, 岳红彦*, 俞泽民, 高鑫, 王宝, 关恩昊, 王钊, 宋姗姗, 张宏杰
哈尔滨理工大学材料科学与工程学院,哈尔滨150040
Preparation and application of MoS2 nanosheet arrays
Wang Wanqiu, Yue Hongyan, Yu Zemin, Gao Xin, Wang Bao, Guan Enhao, Wang Zhao, Song Shanshan, Zhang Hongjie
School of Materials Science and Engineering,Harbin University of Science and Technology,Harbin 150040;
下载:  PDF (1196KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 二硫化钼(MoS2)纳米片阵列是MoS2纳米片与基底材料结合形成的一种具有三维结构的纳米材料。该材料具有优异的导电性和良好的稳定性,广泛应用于析氢反应、超级电容器以及锂离子电池。综述了MoS2纳米片阵列的主要制备方法,包括水热(溶剂热)合成法、溶解-生长法、物理气相沉积法,以及其应用现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王婉秋
岳红彦
俞泽民
高鑫
王宝
关恩昊
王钊
宋姗姗
张宏杰
关键词:  二硫化钼纳米阵列  制备方法  应用现状    
Abstract: MoS2 nanosheet arrays with three-dimensional structure are nano-materials formed by the combination of MoS2 nanosheets and substrate material.It has a unique sheet layered structure,excellent electrical conductivity and good stability.It has a wide range of applications in hydrogen evolution reactions,supercapacitors and lithium-ion batteries.In this paper,the main preparation methods of MoS2 nanosheet arrays,including hydrothermal,physical vapor deposition,dissolution growth,and its application are reviewed.
Key words:  MoS2 nanosheet arrays    preparation    application
收稿日期:  2017-07-10                     发布日期:  2019-01-07      期的出版日期:  2018-12-20
基金资助: 黑龙江省自然基金(LC2015020);国家留学人员科技活动项目(2015192);哈尔滨市科技创新人才基金(2016RAQXJ185);哈尔滨理工大学青年拔尖人才项目(201604)
通讯作者:  岳红彦(1978-),男,博士,教授,硕士生导师,研究方向为新型能源存储材料和纳米生物传感器。   
作者简介:  王婉秋(1994-),女,硕士研究生,研究方向为纳米材料及应用。
引用本文:    
王婉秋, 岳红彦, 俞泽民, 高鑫, 王宝, 关恩昊, 王钊, 宋姗姗, 张宏杰. MoS2纳米片阵列的制备及其应用现状[J]. 化工新型材料, 2018, 46(12): 264-267.
Wang Wanqiu, Yue Hongyan, Yu Zemin, Gao Xin, Wang Bao, Guan Enhao, Wang Zhao, Song Shanshan, Zhang Hongjie. Preparation and application of MoS2 nanosheet arrays. New Chemical Materials, 2018, 46(12): 264-267.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I12/264
[1] Zhang Z,Li W,Yuen M F,et al.Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction[J].Nano Energy,2015,18:196-204.
[2] Kong Q,Wang X,Tang A,et al.Three-dimensional hierarchical MoS2 nanosheet arrays/carbon cloth as flexible electrodes for high-performance hydrogen evolution reaction[J].Materials Letters,2016,177:139-142.
[3] Wang J,Liu J,Chao D,et al.Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage[J].Advanced Materials,2014,26:7162-7169.
[4] Wang C,Wan W,Huang Y,et al.Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries[J].Nanoscale,2014,6:5351-5358.
[5] Kong D,Cheng C,Wang Y,et al.Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes[J].Journal of Materials Chemistry A,2017,5:9122-9131.
[6] Ouyang Q,Yu H,Zhang K,et al.Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films[J].Journal of Materials Chemistry C,2014,2:6319.
[7] Lee J H,Jang W S,Han S W,et al.Efficient hydrogen evolution by mechanically strained MoS2 nanosheets[J].Langmuir,2014,30:9866-9873.
[8] Lee S,Kim Y K,Hong J Y,et al.Electro-response of MoS2 nanosheets-based smart fluid with tailorable electrical conductivity[J].ACS Applied Materials & Interfaces,2016,8:24221-24229.
[9] Liu N,Kim P,Kim J H,et al.Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation[J].ACS Nano,2014,8:6902-6910.
[10] Guo B,Yu K,Li H,et al.Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction[J].ACS Applied Materials & Interfaces,2016,8:5517-5525.
[11] Baghban N,Yilmaz E,Soylak M.Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead (Ⅱ) and copper (Ⅱ) for their flame atomic absorption spectrometric detection[J].Journal of Molecular Liquids,2017,234:260-267.
[12] Khan I.Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium[J].Journal of Molecular Liquids,2017,233:442-451.
[13] Li Q,Newberg J T,Walter E C,et al.Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbons by electrochemical/ chemical synthesis[J].Nano Letters,2004,4:277-281.
[14] Yin D,Wu M,Yang Y,et al.Chiral vectors-tunable electronic property of MoS2 nanotubes[J].Physica E,2016,83:232-237.
[15] Yu H,Ma C,Ge B,et al.Three-dimensional hierarchical architectures constructed by graphene/MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes[J].Chemistry,2013,19:5818-5823.
[16] Zhou Y,Liu Y,Zhao W,et al.Growth of vertically aligned MoS2 nanosheets on Ti substrate through self-supported bonding interface for high-performance lithium-ion batteries:a general approach[J].Journal of Materials Chemistry A,2016,4:5932-5941.
[17] Zhang X,Zhang Y,Yu B B,et al.Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction[J].Journal of Materials Chemistry A,2015,3:19277-19281.
[18] Yang X,Zhao L,Lian J.Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor[J].Journal of Power Sources,2017,343:373-382.
[19] Wang Y,Xing G,Han Z J,et al.Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries[J].Nanoscale,2014,6:8884-8890.
[20] Wang L,Ma Y,Yang M,et al.Titanium plate supported MoS2 nanosheet arrays for supercapacitor application[J].Applied Surface Science,2017,396:1466-1471.
[21] Yan Y,Xia B,Li N,et al.Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes[J].Journal of Materials Chemistry A,2014,3:131-135.
[1] 关恩昊, 岳红彦, 高鑫, 王宝, 王婉秋, 王钊, 宋姗姗, 张宏杰. TiO2纳米线(管)-石墨烯的制备方法和应用现状[J]. 化工新型材料, 2018, 46(9): 13-16.
[2] 王会, 张娜, 高娜, 赵瑞花, 杜建平. 新型纳米碳/碳化钼的制备及应用研究[J]. 化工新型材料, 2018, 46(9): 246-249.
[3] 苏丹阳, 杨朝, 姚少巍, 韩理, 王静. 钴基材料的制备与应用研究进展[J]. 化工新型材料, 2018, 46(9): 69-73.
[4] 贾栓柱, 杜仕国, 闫军. 纳米铝热剂的制备与应用研究现状[J]. 化工新型材料, 2018, 46(8): 261-264.
[5] 傅深娜. 石墨烯/层状双氢氧化物纳米复合材料在超级电容器中的应用研究[J]. 化工新型材料, 2018, 46(8): 5-8.
[6] 田林, 黄俊, 李荣兴, 李威, 谢刚, 杨妮, 俞小花. 氯化法制备纳米TiO2氧化机理的研究进展[J]. 化工新型材料, 2018, 46(8): 238-243.
[7] 白玉, 雷云裕, 刘文慧, 常宏宏, 殷澍, 赵志换. W18O49的制备、性能和应用研究进展[J]. 化工新型材料, 2018, 46(7): 52-55.
[8] 朱瑞, 邓卫斌, 李军, 廉培超, 谢德龙, 梅毅. 锂离子电池硅-碳负极材料的研究进展[J]. 化工新型材料, 2018, 46(7): 34-39.
[9] 徐保明, 张弘, 唐强, 张家晖, 李俊, 李志鹏, 陈坤. 木质素基碳纤维制备方法的研究进展[J]. 化工新型材料, 2018, 46(4): 23-26.
[10] 姜志国, 于丰, 张均, 姚明, 夏春蕾, 杨晶. 树脂透光混凝土的制备方法及研究进展[J]. 化工新型材料, 2018, 46(3): 235-238.
[11] 张宏杰, 岳红彦, 高鑫, 王宝, 宋姗姗, 王钊. NiO纳米片阵列的制备方法及应用进展[J]. 化工新型材料, 2018, 46(12): 52-55.
[12] 张玉环, 刘家伟, 余毛省, 于洪珺, 卑凤利, 武晓东. 纳米银的制备及纳米银/GO复合物在电化学方面的应用研究[J]. 化工新型材料, 2018, 46(12): 279-281.
[13] 谢晨晨, 王爱军, 陈胜利. 碳量子点/TiO2复合光催化剂的研究进展[J]. 化工新型材料, 2018, 46(11): 54-58.
[14] 冯攀,俞小花,李永刚,俞双林,李荣兴,谢刚. 石墨烯的制备及载体应用研究[J]. 化工新型材料, 2018, 46(10): 14-17.
[15] 许杰, 贾旺, 李伟, 刘皓, 李津, 程博闻. 银纳米线制备及应用研究进展[J]. 化工新型材料, 2018, 46(1): 33-37.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn