Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (12): 1-5    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
基于纳米材料的柔性应力传感器研究进展
季超, 桑胜波*, 张强, 杜怡, 刘艳
太原理工大学信息与计算机学院微纳系统研究中心,晋中030600
Research progress of flexible strain sensor based on nanomaterial
Ji Chao, Sang Shengbo, Zhang Qiang, Du Yi, Liu Yan
Micro-Nano System Research Center,College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600;
下载:  PDF (1236KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着各种纳米材料的应用,柔性应力传感技术得到了大力发展,刷新了人们对电子器件、传感器件及系统等形态和功能的认知。依据该技术制成的柔性应力传感器具有灵敏度高、灵活性强的特点,在医疗、保健和监测等许多领域都有着广泛的应用和良好的发展前景。目前常用的纳米材料有金属纳米材料、碳纳米材料及聚合物纳米材料。综述了柔性应力传感器中常用纳米材料的分类及提高性能的方法,从而进一步了解柔性应力传感器的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季超
桑胜波
张强
杜怡
刘艳
关键词:  柔性应力传感器  金属纳米材料  碳纳米材料  聚合物纳米材料    
Abstract: With the application of various nano-materials,flexible stress sensing technology has been vigorously developed,which refreshes people's knowledge of forms and functions of electronic devices,sensors and systems.Flexible strain sensors according to the technology have high sensitivity,flexibility and strong characteristics,and have a wide range of applications and good prospects for development in the medical,health care,monitoring and many other fields.At present,common nanomaterials are metal nanomaterials,carbon nanomaterials and polymer nanomaterials.The classification of nanomaterials commonly used in flexible strain sensors and methods for improving performance was overviewed to further understand the development of flexible strain sensors.
Key words:  flexible strain sensor    metal nanomaterial    carbon nanomaterial    polymer nanomaterial
收稿日期:  2018-03-30                     发布日期:  2019-01-07      期的出版日期:  2018-12-20
基金资助: 国家自然科学基金(61471255和51622507)
通讯作者:  桑胜波,教授。   
作者简介:  季超(1994-),女,硕士研究生,主要研究方向为柔性应力传感器。
引用本文:    
季超, 桑胜波, 张强, 杜怡, 刘艳. 基于纳米材料的柔性应力传感器研究进展[J]. 化工新型材料, 2018, 46(12): 1-5.
Ji Chao, Sang Shengbo, Zhang Qiang, Du Yi, Liu Yan. Research progress of flexible strain sensor based on nanomaterial. New Chemical Materials, 2018, 46(12): 1-5.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I12/1
[1] Wen M M,El-Salamouni N S,El-Refaie W M,et al.Nanotechnology-based drug delivery systems for Alzheimer's disease management:technical,industrial,and clinical challenges[J].Journal of Controlled Release,2017,245:95-107.
[2] 张震,李莹,耿亚伟,等.纳米支架及合成技术在神经组织再生的应用[J].口腔医学研究,2017,33(4):459-462.
[3] Saidi T,Zeiss R.Investigating promises of nanotechnology for development:a case study of the travelling of smart nano water filter in Zimbabwe[J].Technology in Society,2016,46:40-48.
[4] Sakhnini S.The making of nanotechnology:exposing high-school students to behind-the-scenes of nanotechnology by inviting them to a nanotechnology conference:nanotechnology reviews[J].Nanotechnology Reviews,2015,4(1):103-116.
[5] 高广宇,陈美玲,李明媛,等.纳米技术转化医学发展现状及前景展望[J].药学学报,2015,50(8):919-924.
[6] He X,Hwang H M.Nanotechnology in food science:functionality,applicability,and safety assessment[J].Journal of Food & Drug Analysis,2016,24(4):671-681.
[7] Takei K,Takahashi T,Ho J C,et al.Nanowire active-matrix circuitry for low-voltage macroscale artificial skin[J].Nature Material,2010,9(10):821-826.
[8] 安萍,郭浩,陈萌,等.碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究[J].物理学报,2014,63(23):314-319.
[9] Yi F,Lin L,Niu S,et al.Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors[J].Advanced Functional Materials,2015,25(24):3688-3696.
[10] Yang P,Lin L,Yi F,et al.A Flexible,Stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring[J].Advanced Materials,2015,27(25):3817.
[11] 蔡依晨,黄维,董晓臣.可穿戴式柔性电子应变传感器[J].科学通报,2017,62(7):635-649.
[12] Matsuzaki R,Tabayashi K.Wearables:highly stretchable,global,and distributed local strain sensing line ising gaInSn electrodes for wearable electronics[J].Advanced Functional Materials,2015,25(25):3797.
[13] Brock H,Ohgi Y,Seo K.Development of an automated motion evaluation system from wearable sensor devices for ski jumping[J].Procedia Engineering,2016,147:694-699.
[14] 辛毅,郭超,凌振宝,等.基于压电薄膜传感器的穿戴式健康监测体域网系统[J].国防科技大学学报,2016,38(6):161-167.
[15] Trung T Q,Lee N E.Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare[J].Advanced Materials,2016,28(22):4338.
[16] Jeon H,Hong S K,Cho S J,et al.Development of an integrated evaluation system for a stretchable strain sensor[J].Sensors,2016,16(7):1114.
[17] Jeong Y R,Park H,Jin S W,et al.Highly stretchable and sensitive strain sensors using fragmentized graphene foam[J].Advanced Functional Materials,2015,25(27):4228-4236.
[18] 蔡倩文,王金凤,陈慰来.纬编针织柔性传感器结构及其导电性能[J].纺织学报,2016,37(6):48-53.
[19] Koch E,Dietzel A.Skin attachable flexible sensor array for respiratory monitoring[J].Sensors & Actuators A Physical,2016,250:138-144.
[20] Kwak Y H,Kim W,Park K B,et al.Flexible heartbeat sensor for wearable device[J].Biosensors & Bioelectronics,2017,94:250-255.
[21] Pal R K,Pradhan S,Narayanan L,et al.Micropatterned conductive polymer biosensors on flexible PDMS films[J].Sensors & Actuators B Chemical,2018,259:498-504.
[22] Li J,Xie Y,Lu W,et al.Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4,ternary films[J].Carbon,2018,129:76-84.
[23] Cui Z,Han Y,Huang Q,et al.Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics[J].Nanoscale,2018,10(15):6806-6811.
[24] Ding S,Jiu J,Gao Y,et al.One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[J].Acs Appl Mater Interfaces,2016,8(9):6190-6199.
[25] Gong S,Lai D T H,Su B,et al.Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors[J].Advanced Electronic Materials,2015,1(4):1400063.
[26] Sun Y,Gates B,Brian Mayers A,et al.Crystalline silver nanowires by soft solution processing[J].Nano Letters,2002,2(2):165-168.
[27] Chen D,Qiao X,Qiu X,et al.Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method[J].J Colloid Interface Sci,2010,344(2):286-291.
[28] Xu L H,Kan C X,Wang C S,et al.Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method[J].Acta Physico-Chimica Sinica,2014,30(3):569-575.
[29] Wei Y,Chen S,Lin Y,et al.Silver nanowires coated on cotton for flexible pressure sensors[J].Journal of Materials Chemistry C,2016,4(5):935-943.
[30] Akter T,Kim W S.Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires[J].Acs Applied Materials & Interfaces,2012,4(4):1855-1859.
[31] Yao S,Zhu Y.Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires[J].Nanoscale,2014,6(4):2345-2352.
[32] Liu L,Qiang Z,Zhao D,et al.Preparation and property research of strain sensor based on PDMS and silver nanomaterials[J].Journal of Sensors,2017,2017(3):7843052.
[33] Wei Y,Chen S,Lin Y,et al.Cu-Ag core-shell nanowires for electronic skin with petal molded microstructure[J].Journal of Materials Chemistry C,2015,3(37):9594-9602.
[34] Gong S,Schwalb W,Wang Y,et al.A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J].Nature Communications,2014,5(2):3132.
[35] Huang G W,Xiao H M,Fu S Y.Wearable electronics of silver-nanowire/poly(dimethylsilox ane) nanocomposite for smart clothing[J].Scientific Reports,2015,5:13971.
[36] Filippidou M K,Tegou E,Tsouti V,et al.A flexible strain sensor made of graphene nanoplatelets/polydimethylsiloxane nanocomposite[J].Microelectronic Engineering,2015,142(7):7-11.
[37] Kenry,Yeo J C,Yu J,et al.Highly flexible graphene oxide nanosuspension liquid-based microfluidic tactile sensor[J].Small,2016,12(12):1593-1604.
[38] Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
[39] Maune H,Bockrath M.Elastomeric carbon nanotube circuits for local strain sensing[J].Applied Physics Letters,2006,89(17):173131.
[40] Park M,Kim H,Youngblood J P.Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films[J].Nanotechnology,2008,19(5):055705.
[41] Lipomi D J,Vosgueritchian M,Tee C K,et al.Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J].Nature nanotechnology,2011,6(12):788-792.
[42] Yamada T,Hayamizu Y,Yamamoto Y,et al.A stretchable carbon nanotube strain sensor for human-motion detection[J].Nature Nanotechnology,2011,6(5):296-301.
[43] Cohen D J,Mitra D,Peterson K,et al.A highly elastic,capacitive strain gauge based on percolating nanotube networks[J].Nano Letters,2012,12(4):1821-1825.
[44] Jung J,Lee K M,Baeck S H,et al.Piezoresistive behavior of a stretchable carbon nanotube-interlayered poly(dimethylsiloxane) sheet with a wrinkled structure[J].Rsc Advances,2015,5(89):73162-73168.
[45] Wang Z,Huang Y,Sun J,et al.Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J].Acs Applied Materials & Interfaces,2016,8(37):24837-24843.
[46] Guo X,Huang Y,Zhao Y,et al.Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition[J].Smart Material and Structures,2017,26(9):095017.
[47] Zheng Y,Li Y,Dai K,et al.A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring[J].Composites Science & Technology,2018,156(3):276-286.
[48] Woo J Y,Kim K K,Lee J,et al.Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors[J].Nanotechnology,2014,25(28):285203.
[49] Zhu Y,Hu Y,Zhu P,et al.Enhanced oxidation resistance and electrical conductivity copper nanowires-graphene hybrid films for flexible strain sensors[J].New Journal of Chemistry,2017,41(12):4950-4958.
[50] Han J T,Jang J I,Cho J Y,et al.Synthesis of nanobelt-like 1-dimensional silver/nanocarbon hybrid materials for flexible and wearable electroncs[J].Scientific Reports,2017,7(1):4931.
[51] Mandal D,Yoon S,Kim K J.Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor[J].Macromolecular Rapid Communications,2011,32(11):831-837.
[52] Gao Q,Meguro H,Okamoto S,et al.Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies[J].Langmuir,2012,28(51):17593-17596.
[53] Pang C,Lee G Y,Kim T,et al.A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J].Nature Materials,2012,11(9):795-801.
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn