Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (11): 146-149    
  科学研究 本期目录 | 过刊浏览 | 高级检索 |
应力控制下HTPB推进剂的疲劳损伤及寿命研究
梁蔚, 陈雄*, 许进升
南京理工大学机械工程学院,南京210094
Study on fatigue damage and life of HTPB propellant under stress control
Liang Wei, Chen Xiong, Xu Jinsheng
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094
下载:  PDF (1875KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究HTPB推进剂应力控制下的疲劳特性,在动态热机械分析仪上开展了不同应力幅值的疲劳试验。结果表明,应力幅值增大会使疲劳寿命缩短,应力幅值越大,相同加载次数下的疲劳峰值应变越大,疲劳谷点应变越小,最终断裂应变值基本一样。以疲劳峰值应变作为损伤因子,基于损伤力学理论建立了不同应力幅值下的疲劳损伤演化模型,克服了原有的Chaboche模型不能解释循环应变松弛的缺点,可以很好地表征材料损伤演化规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁蔚
陈雄
许进升
关键词:  HTPB推进剂  应力控制  疲劳寿命  损伤模型    
Abstract: In order to investigate the fatigue properties of HTPB propellant under stress loading,fatigue tests with different stress amplitudes were carried out on the dynamic thermo mechanical analyzer.The results showed that when the stress amplitude increased,the fatigue life was shortened.The bigger the stress amplitude was,the bigger the maximum fatigue strain was,the smaller the fatigue residual strain was,and the ultimate fracture strain value was basically the same.Based on the damage mechanics theory,the fatigue damage evolution model which can consider the stress amplitude was established by using the maximum fatigue strain as damage factor.The model can overcome the shortcomings of Chaboche model that can't explain the cyclic strain relaxation,therefore it can be used to characterize the damage evolution law of materials very well.
Key words:  HTPB propellant    stress control    fatigue life    damage model
收稿日期:  2017-07-06                出版日期:  2018-11-20      发布日期:  2018-12-04      期的出版日期:  2018-11-20
基金资助: 国家自然科学基金(51606098)
通讯作者:  陈雄。   
作者简介:  梁蔚(1994-),男,硕士生,研究领域为固体火箭发动机装药结构分析。
引用本文:    
梁蔚, 陈雄, 许进升. 应力控制下HTPB推进剂的疲劳损伤及寿命研究[J]. 化工新型材料, 2018, 46(11): 146-149.
Liang Wei, Chen Xiong, Xu Jinsheng. Study on fatigue damage and life of HTPB propellant under stress control. New Chemical Materials, 2018, 46(11): 146-149.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I11/146
[1] 周红梅,王连生,王宏伟,等.随机载荷下固体发动机药柱黏弹动力响应[J].导弹与航天运载技术,2009(5):46-49.
[2] Singh A,Tang L,Dao M,et al.Fracture toughness and fatigue crack growth characteristics of nanotwinned copper[J].Acta Materialia,2011,59(6):2437-2446.
[3] Lin Y K,Yang J N.A stochastic theory of fatigue crack propagation[J].Aiaa Journal,2015,23(23):117-124.
[4] 邓斌,董可海,谢燕.基于能量耗散的药柱黏弹性累积损伤[J].国防科技大学学报,2013,35(1):24-27.
[5] 邢耀国,曲凯,许俊松,等.舰船摇摆条件下固体火箭发动机舰载寿命预估[J].推进技术,2011,32(1):32-35.
[6] Drozdov A D.Cyclic thermo-viscoplasticity of high density polyethylene[J].International Journal of Solids & Structures,2010,47(11):1592-1602.
[7] Paepegem W V,Degrieck J.A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites[J].International Journal of Fatigue,2002,24(7):747-762.
[8] 高艳宾,许进升,陈雄,等.应变控制下NEPE推进剂非线性疲劳损伤[J].航空动力学报,2015,30(6):1486-1491.
[9] Plumtree A,Melo M,Dahl J.Damage evolution in a [±45] 2 S,CFRP laminate under block loading conditions[J].International Journal of Fatigue,2010,32(1):139-145.
[10] 吴健栋,蔡志鹏,汤之南,等.低周疲劳过程损伤变量的复合分析法和三阶段损伤演化模型[J].机械工程学报,2015,51(10):86-95.
[11] Wang B,Lu H,Tan G,et al.Strength of damaged polycarbonate after fatigue[J].Theoretical & Applied Fracture Mechanics,2003,39(2):163-169.
[12] Dattoma V,Giancane S,Nobile R,et al.Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model[J].International Journal of Fatigue,2006,28(2):89-95.
[13] Wu F,Yao W X.A fatigue damage model of composite materials[J].International Journal of Fatigue,2010,32(1):134-138.
[14] 吴旷怀,杨国良,张肖宁.考虑松弛的沥青混合料疲劳损伤累计模型研究[J].深圳大学学报(理工版),2008,25(4):19-24.
[15] 程光旭,韦玮.复合材料疲劳损伤演化的两阶段模型[J].机械工程材料,2000,24(5):1-4.
[16] 常武军,鞠玉涛,王蓬勃.HTPB推进剂脱湿与力学性能的相关性研究[J].兵工学报,2012,32(3):261-266.
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn