Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (10): 255-258    
  开发与应用 本期目录 | 过刊浏览 | 高级检索 |
金纳米花的种子法制备及其应用
刘宝勇1,付含琦2,彭蓉2,魏绪玲2
1.兰州交通大学化学与生物工程学院,兰州730070;
2.中国石油兰州化工研究中心,兰州730060
Preparation of gold nanoflower by seed-mediated process and their application
Liu Baoyong1,Fu Hanqi2,Peng Rong2,Wei Xuling2
1.School of Chemical and Biological Engineering,Lanzhou Jiaotong University,Lanzhou 730070;
2.Lanzhou Petrochemical Research Center,Petro China,Lanzhou 730060
下载:  PDF (1180KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于具有独特的各向异性超支化结构,金纳米花受到广泛关注。首先详细介绍了金纳米花的种子法制备方法,然后简要总结了金纳米花在表面增强拉曼散射(SERS)、生物医学和催化方面的应用。最后,展望了金纳米花的未来发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宝勇
付含琦
彭蓉
魏绪玲
关键词:  金纳米花  种子法  表面增强拉曼散射  生物医学  催化    
Abstract: For their unique highly branched anisotropic structure,gold nanoflowers (AuNFs) have attracted a great deal of interest.First,the preparation of AuNFs through seed-mediated process was introduced in detail.Furthermore,application of AuNFs,including surface-enhanced Raman scatting (SERS),biomedicine and catalysis,were summarized in brief.At last,the future development was prospected.
Key words:  gold nanoflower    seed-mediated process    surface-enhanced raman scatting    biomedicine    catalysis
               出版日期:  2018-10-20      发布日期:  2018-11-06      期的出版日期:  2018-10-20
基金资助: 兰州交通大学青年科学基金(2013011);甘肃省自然科学基金(1310RJZA066)
作者简介:  刘宝勇(1981-),男,博士研究生,讲师,主要从事材料化学工程研究。
引用本文:    
刘宝勇,付含琦,彭蓉,魏绪玲. 金纳米花的种子法制备及其应用[J]. 化工新型材料, 2018, 46(10): 255-258.
Liu Baoyong,Fu Hanqi,Peng Rong,Wei Xuling. Preparation of gold nanoflower by seed-mediated process and their application. New Chemical Materials, 2018, 46(10): 255-258.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I10/255
[1] Daniel M C,Astruc D.Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology[J].Chemical Reviews,2004,104(1):293-346.
[2] Alex S,Tiwari A.Functionalized gold nanoparticles:synthesis,properties and applications-a review[J].Journal of Nanoscience and Nanotechnology,2015,15(3):1869-1894.
[3] Nehl C L,Hafner J H.Shape-dependent plasmon resonances of gold nanoparticles[J].Journal of Materials Chemistry,2008,18(21):2415-2419.
[4] Rodríguez-Lorenzo L,Alvarez-Puebla R A,Pastoriza-Santos I,et al.Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering[J].Journal of the American Chemical Society,2009,131(13):4616-4618.
[5] Zhong L,Zhai X,Zhu X,et al.Vesicle-directed generation of gold nanoflowers by gemini amphiphiles and the spacer-controlled morphology and optical property[J].Langmuir,2010,26(8),5876-5881.
[6] Bhosale M A,Chenna D R,Ahire J P,et al.Morphological study of microwave-assisted facile synthesis of gold nanoflowers/nanoparticles in aqueous medium and their catalytic application for reduction of p-nitrophenol to p-aminophenol[J].RSC Advances,2015,5(65):52817-52823.
[7] 杜雨晴,许佳丽,王健,等.三维结构金纳米花的快速可控合成及其分析应用研究[J].分析测试学报,2012,31(9):1058-1063.
[8] Liu B,Yang M,Li H.Synthesis of gold nanoflowers assisted by a CH—CF hybrid surfactant and their applications in SERS and catalytic reduction of 4-nitroaniline[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2017,520:213-221.
[9] 任月萍,徐程程,方云.聚乙烯吡咯烷酮碱性水溶液中金纳米花的简易合成[J].物理化学学报,2011,27(5):1244-1248.
[10] 杨艳敏,董前民,梁培,等.步步种子法制备形态及尺寸可控的花状金纳米粒子[J].分析测试学报,2014,33(2):222-226.
[11] Song H M,Deng L,Khashab N M.Intracellular surface-enhanced raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds[J].Nanoscale,2013,5(10):4321-4329.
[12] Lv C,Zhang X Y,Mu C L,et al.Rapid fabrication of gold nanoflowers tuned by pH:insights into the growth mechanism[J].Journal of Nanoscience and Nanotechnology,2015,15(4):2761-2769.
[13] Jiang Y,Wu X,Li Q,et al.Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity[J].Nanotechnology,2011,22(38):385601.
[14] Nhung T T,Bu Y,Lee S W.Facile synthesis of chitosan-mediated gold nanoflowers as surface-enhanced raman scattering (SERS) substrates[J].Journal of Crystal Growth,2013,373:132-137.
[15] Xu D,Gu J,Wang W,et al.Development of chitosan-coated gold nanoflowers as SERS-active probes[J].Nanotechnology,2010,21(37):375101.
[16] Li Q,Jiang Y,Han R,et al.High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging[J].Small,2013,9(6):927-932.
[17] Zhang L,Wang Y,Zhang Y,et al.Hierarchical gold nanoflower syntheses and surface-enhanced Raman scattering properties research[J].Science of Advanced Materials,2013,5(12):1797-1800.
[18] Han J,Li J,Jia W,et al.Photothermal therapy of cancer cells using novel hollow gold nanoflowers[J].International Journal of Nanomedicine,2014,9:517-526.
[19] Huang P,Pandoli O,Wang X S,et al.Chiral guanosine 5′-monophosphate-capped gold nanoflowers:controllable synthesis,characterization,surface-enhanced raman scattering activity,cellular imaging and photothermal therapy[J].Nano Research,2012,5(9):630-639.
[20] Cui Q,He F,Wang X,et al.Gold nanoflower@gelatin core-shell nanoparticles loaded with conjugated polymer applied for cellular imaging[J].ACS Applied Materials and Interfaces,2012,5(1):213-219.
[21] Wang A J,Li Y F,Wen M,et al.Melamine assisted one-pot synthesis of Au nanoflowers and their catalytic activity towards p-nitrophenol[J].New Journal of Chemistry,2012,36(11):2286-2291.
[22] Bhosale M A,Chenna D R,Ahire J P,et al.Morphological study of microwave-assisted facile synthesis of gold nanoflowers/nanoparticles in aqueous medium and their catalytic application for reduction of p-nitrophenol to p-aminophenol[J].RSC Advances,2015,5(65):52817-52823.
[23] Jena B K,Raj C R.Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen[J].Langmuir,2007,23(7):4064-4070.
[1] 丁世环, 徐聪聪, 鹿媛铮. SnS2/BiOBr复合光催化剂的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(9): 205-208.
[2] 王敬荃, 张永丽, 翟官星, 唐鹏. BiOI/Fe3O4光催化耦合过一硫酸氢盐降解酸性橙Ⅱ研究[J]. 化工新型材料, 2018, 46(9): 209-212.
[3] 陈敏敏, 张婷, 刘晋. 黏土基催化剂的制备及在处理难降解有机废水中的研究进展[J]. 化工新型材料, 2018, 46(9): 217-220.
[4] 张艳苹, 刘海峰, 霍冀川. 钙钛矿型氧化物薄膜的制备及光催化降解染料的研究进展[J]. 化工新型材料, 2018, 46(9): 55-59.
[5] 陈萍, 刘婷, 姚凯波, 袁国秋, 石磊, 葛存旺. 石墨烯量子点修饰TiO2复合纳米材料的制备及其光电性能研究[J]. 化工新型材料, 2018, 46(8): 79-84.
[6] 杨晓龙, 张义, 刘子森, 夏世斌, 贺锋, 吴振斌. 纳米光催化剂处理难降解性有机物的研究进展[J]. 化工新型材料, 2018, 46(8): 38-41.
[7] 康维刚, 徐大鹏, 江恒泽陈建. 银纳米材料的应用进展[J]. 化工新型材料, 2018, 46(8): 20-24.
[8] 何登良, 张蓝心, 舒小元, 刘树信. 纳米ZnO/电气石复合粉体的制备及其对亚甲基蓝光催化性能的研究[J]. 化工新型材料, 2018, 46(8): 93-96.
[9] 熊乐艳, 张楠, 郭赞如, 马伟, 郑龙珍. 掺N纳米TiO2光催化材料的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 97-101.
[10] 张宏忠, 李旭燕, 杨柳阳, 严一凡, 梁超凡. 光电催化还原CO2为气体燃料的研究进展[J]. 化工新型材料, 2018, 46(8): 221-224.
[11] 黄云镜, 于计生, 唐丽梅, 李青松. 太阳光下TiO2光催化还原Cr(Ⅵ)影响因素研究[J]. 化工新型材料, 2018, 46(8): 191-194.
[12] 李杰, 逄显娟, 宋晨飞. 钒酸铋的选择性合成及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 217-220.
[13] 刘云梅. 氮硫共掺杂碳纳米管的制备及其催化性能研究[J]. 化工新型材料, 2018, 46(7): 127-130.
[14] 李远勋, 李荡, 陈振玲. Ag、Cu掺杂TiO2催化剂的制备及其光催化降解阿昔洛韦的研究[J]. 化工新型材料, 2018, 46(7): 143-147.
[15] 龙森, 庹必阳, 谢飞, 韩朗, 徐科. 钛柱撑蒙脱石的制备及对亚甲基蓝的光催化降解研究[J]. 化工新型材料, 2018, 46(7): 198-201.
[1] Duan Lingyao, Hou Chaoyi, Chen Chuang, Jia Qiong, Hou Zhenyu. Hydrothermal synthesis and the gas sensing property of ZnO[J]. New Chemical Materials, 2017, 45(9): 184 -185 .
[2] Li Huihao, Qi Lu, Li Jun. Preparation and property of down protein fiber modified by zirconium oxychloride[J]. New Chemical Materials, 2018, 46(3): 253 -256 .
[3] Zhang Shumin, Ren Xuehong, Li Qingfang. Study on antibacterial finishing of PP nonwoven fabric by N-halamine copolymer[J]. New Chemical Materials, 2018, 46(4): 201 -204 .
[4] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn