Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (10): 210-216    
  科学研究 本期目录 | 过刊浏览 | 高级检索 |
MIL-125/4N-TiO2复合光催化材料的制备 及其光催化性能研究
熊乐艳,张楠,马伟,郭赞如*,郑龙珍*
华东交通大学材料科学与工程学院,南昌330013
Study on preparation and photocatalysis of MIL-125/4N-TiO2 composite material
Xiong Leyan ,Zhang Nan ,Ma Wei ,Guo Zanru ,Zheng Longzhen
School of Material Science and Engineering,East China Jiaotong University,Nanchang 330013
下载:  PDF (2898KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过凝胶-溶胶法、水热法分别制备了4N-TiO2纳米粒子和MIL-125 MOFs两种材料。通过配位自组装法制备了复合材料MIL-125/4N-TiO2。分别通过扫描电镜、红外光谱、XRD、N2吸附-脱附等手段对所制备的复合材料进行了表征。分析表明,得到了MIL-125/4N-TiO2复合材料。通过光催化降解罗丹明6G模型化合物,发现复合材料具有光催化降解能力,并发现在pH为7的条件下,MIL-125与4N-TiO2的比例为1∶1时,降解罗丹明6G效率最高,可达98.12%;MIL-125与4N-TiO2的比例为3∶1时,吸附罗丹明6G效率最高,可达63.7%。通过分析光催化前后产物,得出该复合光催化剂能够吸附并光降解罗丹明6G。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊乐艳
张楠
马伟
郭赞如
郑龙珍
关键词:  复合材料  MIL-125/4N-TiO2  吸附降解  最优降解条件  罗丹明6G    
Abstract: 4N-TiO2 particles and MIL-125 were prepared by the sol-gel method and hydrothermal method respectively.The MIL-125/4N-TiO2 were prepared by coordination reaction induced self-assembly route.The MIL-125/4N-TiO2 was characterized by scanning electron microscope (SEM),infrared spectroscopy (IR),X-ray diffraction (XRD) and nitrogen adsorption-desorption isotherm.Based on the results,it was found that MIL-125/4N-TiO2 was synthesized successfully.Through the photocatalytic degradation of rhodamine 6G model compounds,the composite had the property of photocatalytic degradation.When pH value was 7,the ratio of MIL-125 and 4N-TiO2 was 1∶1,the degradation ratio was the best of 98.12%.When the ratio of MIL-125 to 4N-TiO2 was 3∶1,the adsorption ratio was 63.7%.By comparing the infrared spectra of composites before and after photocatalytic oxidation,it was concluded that the composite was able to adsorb rhodamine 6G,and then photocatalytic degraded it.
Key words:  composite material    MIL-125/4N-TiO2    absorption degradation    optimum condition    Rhodamine 6G
                    发布日期:  2018-11-06      期的出版日期:  2018-11-06
基金资助: 国家自然科学基金(21465011,51563009);江西省主要学科学术和技术带头人计划(20133BCB22007)
通讯作者:  郭赞如,郑龙珍。   
作者简介:  熊乐艳(1971-),女,副教授,主要从事功能材料的研究。
引用本文:    
熊乐艳,张楠,马伟,郭赞如,郑龙珍. MIL-125/4N-TiO2复合光催化材料的制备 及其光催化性能研究[J]. 化工新型材料, 2018, 46(10): 210-216.
Xiong Leyan ,Zhang Nan ,Ma Wei ,Guo Zanru ,Zheng Longzhen. Study on preparation and photocatalysis of MIL-125/4N-TiO2 composite material. New Chemical Materials, 2018, 46(10): 210-216.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I10/210
[1] Rafatullah M,Sulaiman O,Hashim R,et al.Adsorption of methylene blue on low-cost adsorbents:a review[J].Journal of Hazardous Materials,2010,177(1/3):70-80.
[2] Gupta V K,Kumar R,Nayak A,et al.Adsorptive removal of dyes from aqueous solution onto carbon nanotubes:a review[J].Advances in Colloid & Interface Science,2013,193/194(6):24-34.
[3] Mahmoodi N M,Salehi R,Arami M,et al.Dye removal from colored textile wastewater using chitosan in binary systems[J].Desalination,2011,267(1):64-72.
[4] 董泽民.纳米复合界面的构筑及其在光催化中应用的研究[D].南昌:华东交通大学,2014.
[5] Fox M A,Dulay M T.Heterogeneous photocatalysis[J].Chemical Reviews,1993,93(1):341-357.
[6] Hoffmann M R,Choi W,Bahnemann D W.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
[7] Zhu J,Deng Z,Chen F,et al.Hydrothermal doping method for preparation of Cr3+-TiO2,photocatalysts with concentration gradientdistribution of Cr3+[J].Applied Catalysis B Environmental,2006,62(3/4):329-335.
[8] Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J].Journal of Physical Chemistry,1994,98(51):13669-13679.
[9] Yadav H M,Kolekar T V,Pawar S H,et al.Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescentlight[J].Journal of Materials Science Materials in Medicine,2016,27(3):2103-2108.
[10] Martha S,Das D P,Biswal N,et al.Facile synthesis of visible light responsive V2O5/N/S-TiO2 composite photocatalyst:enhanced hydrogen production and phenol degradation[J].Journal of Materials Chemistry,2012,22(22):10695-10703.
[11] Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-71.
[12] Hang N T P,Truong N D,Nguyen L T,et al.Enhancement of the visible light photocatalytic activity of vanadium and nitrogen co-doped TiO2 thin film[J].Journal of Nonlinear Optical Physics & Materials,2016,25(4).
[13] Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J].Science,2001,293(5528):269-271.
[14] Yasushige Kuroda,Toshinori Mori,Kazunori Yagi,et al.Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method:analysis of the active centeron TiO2 that reacts with NH3[J].Langmuir the Acs Journal of Surfaces & Colloids,2005,21(17):8026-8034.
[15] Horst K,Shanmugasundaram S,Marcin J A,et al.A low-band gap,nitrogen-modified titania visible-light photocatalyst[J].Journal of Physical Chemistry C,2007,111(30):11445-11449.
[16] Yang K,Dai Y,Huang B.Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations[J].Journal of Physical Chemistry C,2007,111(32):12086-12090.
[17] Sun S,Sun M,Fang Y,et al.One-step in situ calcination synthesis of g-C3N4/N-TiO2hybrids with enhanced photoactivity[J].Rsc Advances,2016,6(16).
[18] Bhirud A P,Sathaye S D,Waichal R P,et al.In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light[J].Nanoscale,2015,7(11):5023-34.
[19] Zhao D,Timmons D J,Yuan D,et al.Tuning the topology and functionality of metal-organic frameworks by ligand design[J].Accounts of Chemical Research,2011,44(2):123-33.
[20] Chae H K,Siberio-Pérez D Y,Kim J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523-527.
[21] Seo J S,Whang D,Lee H,et al.A homochiral metal-organic porous material for enantioselective separation and catalysis[J].Nature,2000,404(6781):982-926.
[22] Deng H,Doonan C J,Furukawa H,et al.Multiple functional groups of varying ratios in metal-organic frameworks[J].Science,2010,327(5967):846-850.
[23] Chen B,Xiang S,Qian G.Metal-organic frameworks with functional pores for recognition of small molecules[J].Accounts of Chemical Research,2010,43(8):1115-1124.
[24] Kurmoo M.Magnetic metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1353-1379.
[25] Wang C,Lin W.Diffusion-controlled luminescence quenching in metal-organic frameworks[J].Journal of the American Chemical Society,2011,133(12):4232-4235.
[26] Ma Z,Moulton B.Recent advances of discrete coordination complexes and coordination polymers in drug delivery[J].Coordination Chemistry Reviews,2011,255(15/16):1623-1641.
[27] Bhakta R K,Herberg J L,Jacobs B,et al.Metal-organic frameworks as templates for nanoscale NaAlH4[J].Journal of the American Chemical Society,2009,131(37):13198-13199.
[28] Zheng N,Bu X,Feng P.Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J].Nature,2003,426(6965):428-432.
[29] Kuppler R J,Timmons D J,Fang Q R,et al.Potential applications of metal-organic frameworks[J].Coordination Chemistry Reviews,2009,253(23/24):3042-3066.
[30] 陈琪,费霞,何琴琴,等.MIL-101/P25复合材料的制备及光催化性能[J].无机化学学报,2014,30(5):993-1000.
[31] 武其亮.掺杂介孔二氧化钛及与有机聚合物、钛基MOF复合材料的制备和可见光光催化性质[D].合肥:合肥工业大学,2013.
[32] Jin D,Xu Q,Yu L,et al.Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2[J].Microchimica Acta,2015,182(11/12):1885-1892.
[33] Carp O,Patron L,Diamandescu L,et al.Thermal decomposition study of the coordination compound [Fe(urea)6](NO3)3[J].Thermochimica Acta,2002,390(1/2):169-177.
[34] Wu P Y,Jiang Y P,Zhang Q Y,et al.Comparative study on arsenate removal mechanism of MgO and MgO/TiO2 composites:FT-IR and XPS analysis[J].New Journal of Chemistry,2016,40(3):2878-2885.
[35] Danhardi M,Serre C,Frot T,et al.A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J].Journal of the American Chemical Society,2009,131(131):10857-10859.
[36] 高濂.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社材料科学与工程出版中心,2002.
[37] 孙奉玉,吴鸣,李文钊,等.二氧化钛的尺寸与光催化活性的关系[J].催化学报,1998,19(3):229-233.
[1] 关恩昊, 岳红彦, 高鑫, 王宝, 王婉秋, 王钊, 宋姗姗, 张宏杰. TiO2纳米线(管)-石墨烯的制备方法和应用现状[J]. 化工新型材料, 2018, 46(9): 13-16.
[2] 苏丹阳, 杨朝, 姚少巍, 韩理, 王静. 钴基材料的制备与应用研究进展[J]. 化工新型材料, 2018, 46(9): 69-73.
[3] 赵利亚, 陈修敏, 李又兵, 刘小祥, 徐吉婷. 玻璃纤维增强不饱和聚酯夹层板复合材料性能研究[J]. 化工新型材料, 2018, 46(9): 80-83.
[4] 董广雨, 丁玉梅, 杨卫民, 谢鹏程. 连续碳纤维复合材料热压成型工艺条件优化研究[J]. 化工新型材料, 2018, 46(8): 71-74.
[5] 陈静, 杨建军, 吴庆云, 张建安, 吴明元. 纳米SiO2改性聚四氟乙烯复合材料的研究进展[J]. 化工新型材料, 2018, 46(8): 1-4.
[6] 李敬会, 姜贵文, 黄菊花. 铝蜂窝增强膨胀石墨/石蜡复合材料的制备和性能研究[J]. 化工新型材料, 2018, 46(8): 89-92.
[7] 熊乐艳, 张楠, 郭赞如, 马伟, 郑龙珍. 掺N纳米TiO2光催化材料的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 97-101.
[8] 刘凡, 钱晓明. 超细纤维合成革复合材料的研究进展[J]. 化工新型材料, 2018, 46(8): 247-250.
[9] 毕永豹, 杨兆哲, 许民. 聚乳酸/麦秸粉复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(8): 269-271.
[10] 陶玉虎, 刘志同, 丁国新, 王玉梅. 改性玄武岩纤维/天然橡胶复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(7): 60-63.
[11] 陈杨华, 徐珩, 杨皓月, 刘媛. 脂肪酸碳纳米管蓄能复合材料的制备及热物性研究[J]. 化工新型材料, 2018, 46(7): 64-66.
[12] 张慧莉. 一步法制备Fe2O3/碳纳米管复合材料及其电化学性能研究[J]. 化工新型材料, 2018, 46(7): 148-150.
[13] 张艳, 张国锋, 胡松江, 陈彦青, 务孔永, 沈万慈. 石墨基柔性接地体及其在通信基站接地网中的应用[J]. 化工新型材料, 2018, 46(7): 245-249.
[14] 黄献宁, 李超, 曹爽, 朱宗强, 朱义年, 王敦球, 陈强. 桉树遗态结构HAP/C复合材料制备及表征[J]. 化工新型材料, 2018, 46(7): 266-268.
[15] 王晓亮, 张佳齐, 杨绍斌, 洪晓东, 闫慧妍. 水滑石/石墨烯超级电容器电极材料的制备研究进展[J]. 化工新型材料, 2018, 46(7): 29-33.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn