Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (10): 134-138    
  新材料与新技术 本期目录 | 过刊浏览 | 高级检索 |
介孔石墨相氮化碳纳米片的制备 及光催化抗菌性能研究
马占强,宋鹏,石兆勇,侯典云*
河南科技大学农学院,洛阳471023
Facile preparation of mpg-C3N4 nanosheet for enhanced photocatalytic disinfection performance
Ma Zhanqiang, Song Peng, Shi Zhaoyong, Hou Dianyun
College of Agriculture,Henan University of Science and Technology,Luoyang 471023
下载:  PDF (2428KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用盐酸预处理三聚氰胺后煅烧的方法制备介孔石墨相氮化碳纳米片(mpg-C3N4)。通过X射线衍射、红外光谱、扫描电镜、紫外-可见光光谱、荧光光谱和比表面积对样品的性质进行表征,并研究石墨相氮化碳(g-C3N4)和mpg-C3N4的光催化抗菌(大肠杆菌)活性。mpg-C3N4和g-C3N4具有相同的分子结构,但mpg-C3N4的介孔和超薄纳米片结构有效增大了比表面积,同时显著降低了光生e-和h+的复合率,从而表现出优异的光催化抗菌活性。h+和·O-2是mpg-C3N4光催化抗菌过程中主要的活性基团。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马占强
宋鹏
石兆勇
侯典云
关键词:  介孔g-C3N4纳米片  光催化  抗菌  大肠杆菌    
Abstract: Mesoporous g-C3N4 nanosheets (mpg-C3N4) were synthesized via the calcination of melamine pretreated by HCl.The samples were characterized by XRD,FT-IR,TEM,UV-Vis,PL and BET.The photocatalytic activities were evaluated by the photocatalytic disinfection of E.coli.Mpg-C3N4 had similar molecular structure with g-C3N4,but the specific surface area of mpg-C3N4 was much larger than that of g-C3N4 due to the structure of mesoporous and ultrathin nanosheets which restricted the recombination of photogenerated electrons and holes.Therefore,mpg-C3N4 exhibited the more excellent photocatalytic disinfection performances.h+ and ·O-2 were the major active radicals in the photocatalytic disinfection of E.coli.
Key words:  mesoporous g-C3N4 nanosheet (mpg-C3N4)    photocatalysis    disinfection    E.coli
                    发布日期:  2018-11-06      期的出版日期:  2018-11-06
基金资助: 国家自然科学基金(U1404829);河南省科技厅重点攻关项目(152102110164);河南省教育厅自然科学研究项目(13A180260);河南科技大学大学生研究训练计划SRTP(2016137)
通讯作者:  侯典云。   
作者简介:  马占强(1978-),男,博士,副教授,主要研究方向为生物修复和微生物资源利用。
引用本文:    
马占强,宋鹏,石兆勇,侯典云. 介孔石墨相氮化碳纳米片的制备 及光催化抗菌性能研究[J]. 化工新型材料, 2018, 46(10): 134-138.
Ma Zhanqiang,Song Peng,Shi Zhaoyong,Hou Dianyun. Facile preparation of mpg-C3N4 nanosheet for enhanced photocatalytic disinfection performance. New Chemical Materials, 2018, 46(10): 134-138.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I10/134
[1] Mu oz-Batista M J,de los Milagros Ballari M,Kubacka A,et al.Acetaldehyde degradation under UV and visible irradiation using CeO2-TiO2 composite systems:evaluation of the photocatalytic efficiencies[J].Chemical Engineering Journal,2014,255:297-306.
[2] Guo Y,Lin S,Li X,et al.Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities[J].Applied Surface Science,2016,384:83-91.
[3] Yan X,Zhu X,Li R,et al.Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light[J].Journal of Hazardous Materials,2016,303:1-9.
[4] Xia D,Hu L,He C,et al.Simultaneous photocatalytic elimination of gaseous NO and SO2 in a BiOI/Al2O3-padded trickling scrubber under visible light[J].Chemical Engineering Journal,2015,279:929-938.
[5] Mehedi I M,Hossain M F,Takahashi T,et al.Nano-structural variation of highly aligned anodic Titania nanotube arrays for gas phase photocatalytic application[J].Journal of Photochemistry And Photobiology A:Chemistry,2017,335:200-210.
[6] Sugra ez R,Balbuena J,Cruz-Yusta M,et al.Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases[J].Applied Catalysis B:Environmental,2015,165:529-536.
[7] Shen S,Chen J,Wang X,et al.Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light[J].Journal of Power Sources,2011,196(23):10112-10119.
[8] Xu L,Sun X,Tu H,et al.Synchronous etching-epitaxial growth fabrication of facet-coupling NaTaO3/Ta2O5 heterostructured nanofibers for enhanced photocatalytic hydrogen production[J].Applied Catalysis B:Environmental,2016,184:309-319.
[9] Kanhere P,Zheng J,Chen Z.Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3[J].International Journal of Hydrogen Energy,2012,37(6):4889-4896.
[10] Iwase A,Yoshino S,Takayama T,et al.Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides,CoOx-loaded BiVO4,and a eeduced graphene oxide electron mediator[J].Journal of the American Chemical Society,2016,138(32):10260-10264.
[11] Tan L,Ong W,Chai S,et al.Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction[J].Applied Catalysis B:Environmental,2015,179:160-170.
[12] Song G,Xin F,Yin X.Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol[J].Journal of Colloid And Interface Science,2015,442:60-66.
[13] Liang J,Shan C,Zhang X,et al.Bactericidal mechanism of BiOI-AgI under visible light irradiation[J].Chemical Engineering Journal,2015,279:277-285.
[14] Ashkarran A A,Hamidinezhad H,Haddadi H,et al.Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light[J].Applied Surface Science,2014,301:338-345.
[15] Wei Z,Liang F,Liu Y,et al.Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film[J].Applied Catalysis B:Environmental,2017,201:600-606.
[16] Hassan M S,Amna T,Yang O B,et al.TiO2 nanofibers doped with rare earth elements and their photocatalytic activity[J].Ceramics International,2012,38(7):5925-5930.
[17] Wang X,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials,2009,8(1):76-80.
[18] Wu M,Yan J,Zhang X,et al.Ag2O modified g-C3N4 for highly efficient photocatalytic hydrogen generation under visible light irradiation[J].Journal of Materials Chemistry A,2015,3(30):15710-15714.
[19] Fu Y,Huang T,Zhang L,et al.Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes:a borohydride-generated superoxide radical approach[J].Nanoscale,2015,7(32):13723-13733.
[20] Raziq F,Qu Y,Zhang X,et al.Enhanced cocatalyst-free visible-light activities for photocatalytic fuel production of g-C3N4 by trapping holes and transferring electrons[J].The Journal of Physical Chemistry C,2016,120(1):98-107.
[21] Bi L,Xu D,Zhang L,et al.Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity:the change in surface band bending[J].Physical Chemistry Chemical Physics,2015,17(44):29899-29905.
[22] Dong G,Ho W,Li Y,et al.Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal[J].Applied Catalysis B:Environmental,2015,174-175:477-485.
[23] Xing Z,Chen Z,Zong X,et al.A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production[J].Chemical Communications,2014,50(51):6762-6764.
[24] Yan S,Li Z,Zou Z.Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J].Langmuir,2009,25(17):10397-10401.
[25] Zhang J,Sun J,Maeda K,et al.Sulfur-mediated synthesis of carbon nitride:band-gap engineering and improved functions for photocatalysis[J].Energy & Environmental Science,2011,4(3):675-678.
[26] Dong G,Zhang L.Porous structure dependent photoreactivity of graphitic carbon nitride under visible light[J].Journal of Materials Chemistry,2012,22(3):1160-1166.
[27] Li X,Guo Z,Li J,et al.Quenched electrochemiluminescence of Ag nanoparticles functionalized g-C3N4 by ferrocene for highly sensitive immunosensing[J].Analytica Chimica Acta,2015,854:40-46.
[28] Lin Q,Li L,Liang S,et al.Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J].Applied Catalysis B:Environmental,2015,163:135-142.
[29] She X,Xu H,Xu Y,et al.Exfoliated graphene-like carbon nitride in organic solvents:enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+[J].Journal of Materials Chemistry A,2014,2(8):2563-2570.
[1] 丁世环, 徐聪聪, 鹿媛铮. SnS2/BiOBr复合光催化剂的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(9): 205-208.
[2] 张艳苹, 刘海峰, 霍冀川. 钙钛矿型氧化物薄膜的制备及光催化降解染料的研究进展[J]. 化工新型材料, 2018, 46(9): 55-59.
[3] 陈萍, 刘婷, 姚凯波, 袁国秋, 石磊, 葛存旺. 石墨烯量子点修饰TiO2复合纳米材料的制备及其光电性能研究[J]. 化工新型材料, 2018, 46(8): 79-84.
[4] 杨晓龙, 张义, 刘子森, 夏世斌, 贺锋, 吴振斌. 纳米光催化剂处理难降解性有机物的研究进展[J]. 化工新型材料, 2018, 46(8): 38-41.
[5] 康维刚, 徐大鹏, 江恒泽陈建. 银纳米材料的应用进展[J]. 化工新型材料, 2018, 46(8): 20-24.
[6] 何登良, 张蓝心, 舒小元, 刘树信. 纳米ZnO/电气石复合粉体的制备及其对亚甲基蓝光催化性能的研究[J]. 化工新型材料, 2018, 46(8): 93-96.
[7] 熊乐艳, 张楠, 郭赞如, 马伟, 郑龙珍. 掺N纳米TiO2光催化材料的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 97-101.
[8] 黄云镜, 于计生, 唐丽梅, 李青松. 太阳光下TiO2光催化还原Cr(Ⅵ)影响因素研究[J]. 化工新型材料, 2018, 46(8): 191-194.
[9] 李杰, 逄显娟, 宋晨飞. 钒酸铋的选择性合成及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 217-220.
[10] 李远勋, 李荡, 陈振玲. Ag、Cu掺杂TiO2催化剂的制备及其光催化降解阿昔洛韦的研究[J]. 化工新型材料, 2018, 46(7): 143-147.
[11] 龙森, 庹必阳, 谢飞, 韩朗, 徐科. 钛柱撑蒙脱石的制备及对亚甲基蓝的光催化降解研究[J]. 化工新型材料, 2018, 46(7): 198-201.
[12] 刘勇, 寇璐垚, 付孝锦, 由耀辉, 黄成华, 郑小刚. ZnFe2O4/g-C3N4对甲基橙的紫外光催化降解行为[J]. 化工新型材料, 2018, 46(7): 202-204.
[13] 覃利琴, 周凤燕, 陶萍芳, 冯靖红. 沉淀法合成蘑菇状AgBr-Ag3PO4催化剂及其光催化性能研究[J]. 化工新型材料, 2018, 46(7): 194-197.
[14] 孙慧, 赵东风, 李石. Ce掺杂的有序大孔TiO2制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(7): 93-96.
[15] 张敬, 孙学凤, 高婷婷, 周国伟. TiO2/MoS2复合材料的制备及其在光催化和储能电池中的应用研究进展[J]. 化工新型材料, 2018, 46(6): 43-47.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn