Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (10): 18-21    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
聚合物基纳米杂化吸波材料的研究进展
吉小利,高旭晨,邢宏龙
安徽理工大学化学工程学院,淮南232001
Progress in polymer-based hybrid microwave-absorbing nanomaterial
Ji Xiaoli, Gao Xuchen , Xing Honglong
Department of Chemical Engineering,Anhui University of Science and Technology, Huainan 232001
下载:  PDF (1181KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波吸波材料需要满足微波吸收强度大、吸收频带宽、厚度薄和质量轻等要求,聚合物/纳米杂化材料是实现这些要求的一个重要方向。近年来,各种不同组成、不同结构的聚合物基纳米杂化吸波材料的报道正逐年增加。从聚合物基纳米杂化复合吸波材料、聚合物基纳米分子杂化吸波材料和聚合物基体三方面,综述了其研究进展。探讨聚合物基纳米杂化吸波材料的结构与性能之间的关系,提出获得高性能聚合物基纳米杂化吸波材料的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吉小利
高旭晨
邢宏龙
关键词:  聚合物  纳米杂化材料  吸波材料  研究进展    
Abstract: Microwave-absorbing materials need to meet the requirements of strong absorption of microwave,broad absorption band,thin depth,light weight,and low infrared emissivity,et al.Combination of nano inorganic materials with polymer hybrid materials was expected to take the advantage of both materials to really fulfil these demands.In recent years,all kinds of different structure and performance of polymer-based nano hybrid microwave-absorbing materials were reported increasing year by year.From three aspects of polymer-based nano composite microwave-absorbing materials,polymer-based nano molecular hybrid microwave-absorbing materials and the polymer matrix,their research progress were reviewed by discussing the relationship between the structure and properties of materials,train of thought for obtaining high-performance microwave-absorbing materials were presented.
Key words:  polymer    nano hybrid material    microwave-absorbing material    developing progress
                    发布日期:  2018-11-06      期的出版日期:  2018-11-06
基金资助: 国家自然科学研究项目(51707003);安徽省高校自然科学研究重点项目(KJ2016A198);2017国家级大学生创新训练项目(201710361265);安徽理工大学2015年校引进人才基金资助项目(11470)
作者简介:  吉小利(1978-),女,博士,副教授,主要从事有机功能高分子材料研究。
引用本文:    
吉小利,高旭晨,邢宏龙. 聚合物基纳米杂化吸波材料的研究进展[J]. 化工新型材料, 2018, 46(10): 18-21.
Ji Xiaoli,Gao Xuchen,Xing Honglong. Progress in polymer-based hybrid microwave-absorbing nanomaterial. New Chemical Materials, 2018, 46(10): 18-21.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I10/18
[1] 张月芳,郝万军.电磁辐射污染及其防护技术[M].北京:冶金工业出版社,2010,8-79.
[2] 刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2014,12-98.
[3] Wang T,Wang H,Chi X,et al.Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon[J].Carbon,2014,74(8):312-318.
[4] Fu M,Jiao Q,Zhao Y,et al.Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials[J].J Mater Chem C A,2014,3(2):735-744.
[5] Kong L,Yin X,Yuan X,et al.Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethylsiloxane) composites[J].Carbon,2014,73:185-193.
[6] Yang H B,Ye T,Lin Y.Microwave absorbing properties based on polyaniline/magnetic nanocomposite powders[J].RSC Adv,2015,125(5):103488-103493.
[7] Yan Z Q,Xu H Y,Guang S Y,et al.A convenient organic-inorganic hybrid approach toward highly stable squaraine dyes with reduced H-aggregation[J].Adv Func Mater,2012,22(2):345-352.
[8] Xiao H M,Fu S Y.Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals[J].Cryst Eng Comm,2014,16(11):2097-2112.
[9] Zhao J,Lin J P,Xiao J P,et al.Synthesis and electromagnetic,microwave absorbing properties of polyaniline/grapheme oxide/Fe3O4 nanocomposites[J].RSC Adv,2015,25(5):19345-19352.
[10] Chen Y,Liu X Y,Zhuang Q X,et al.γ-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability[J].Nanoscale,2014,12(6):6440-6447.
[11] Wang G S,Zhang X J,Guo L,et al.Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride[J].J Mater Chem A,2013,24(1):7031-7036.
[12] Wang H C,Ma N,He J,et al.Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties[J].Nanoscale,2015,16(7):7189-7196.
[13] Lin L,Xing H L,Tan D X,et al.Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO2 nanocrystals[J].RSC Adv,2015,115(5):94539-94550.
[14] Xing H L,Liu Z F,Ji X L,et al.Excellent microwave absorption properties of Fe ion-doped SnO2/multi-walled carbon nanotube composites[J].RSC Adv,2016,48(6):41656-41664.
[15] Wang H,Wang G,Li W,et al.A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly(ether sulfone) in a poly(ether ketone) matrix[J].J Mater Chem C,2012,39(22):21232-21239.
[16] Wen B,Wang X,Cao W,et al.Reduced graphene oxides:the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world[J].Nanoscale,2014,11(6):5754-5761.
[17] Wu F,Xia Y,Wang Y,et al.Two-step reduction of self-assembed (3D) reduced graphene oxide(RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption[J].J Mater Chem A,2014,47(2):20307-20315.
[18] Wang L,Xing H L,Gao S T,et al.Porous flower-like NiO@graphene composites with superior microwave absorption properties[J].J Mater Chem C,2017,8(5):2005-2014.
[19] Wang W J,Gumfekar S P,Zhao B X,et al.Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials[J].J Mater Chem C,2013,16(1):2851-2859.
[20] Liu P,Huang Y,Sun X.Excellent electromagnetic absorption properties of poly(3,4-ethylene dioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method[J].ACS Appl Mater Interfaces,2016,23(5):12355-12360.
[21] Hong X W,Xie Y,Wang X Y,et al.A novel ternary hybrid electromagnetic wave-absorbing composite based on BaFe11.92(LaNd)0.04O19-titanium dioxide/multiwalled carbon nanotubes/polythiophene[J].Compos Sci Technol,2015,117(1):215-224.
[22] Rohini R,Bose S.Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in polystyrene/poly(methyl methacrylate) blends[J].ACS Appl Mater Interfaces,2014,14(6):11302-11310.
[23] Song W L,Fan L Z,Cao M S,et al.Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding[J].J Mater Chem C,2014(25):5057-5064.
[24] Song W L,Cao M S,Lu M M,et al.Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement[J].Nanotechnology,2013,24(11):115708-115715.
[25] Singh K,Chandra A,Dhawan S K,et al.Microwave absorption behavior of core-shell structured poly(3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites[J].ACS Appl Mater Interfaces,2010,3(2):927-933.
[26] Singh A P,Mishra M,Sambyal P,et al.Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution[J].J Mater Chem A,2014,10(2):3581-3593.
[27] Chen Z,Xu C,Ma C,et al.Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J].Adv Mater,2013,25(9):1296-1300.
[28] Wu F,Wang Y,Wang M.Using organic solvent absorption as a self-assembly method to synthesize three-dimensional (3D) reduced graphene oxide (RGO)/poly (3,4-ethylenedioxythiophene)(PEDOT) architecture and its electromagnetic absorption properties[J].RSC Adv,2014,91(4):49780-49782.
[29] Zhou H,Wang J C,Zhuang J D,et al.A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers[J].Nanoscale,2013,24(5):12502-12511.
[30] Hayashida K,Matsuoka Y.Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance[J].Carbon,2015,85(13):363-371.
[31] Wei W,Yue X G,Jiang Z H,et al.Novel ternary Fe3O4@polyaniline/polyazomethine/polyetheretherketone crosslinked hybrid membranes:fabrication,thermal properties and electro-magnetic behaviours[J].RSC Adv,2014,4(22):11159-11167.
[1] 门秀婷, 王丽, 王学军, 刘美君, 范慧鹏. 新型无定形全氟二氧杂环戊烷聚合物的研究进展[J]. 化工新型材料, 2018, 46(9): 8-12.
[2] 张瑞珠, 贾新杰, 李林杰, 王重洋. 环氧树脂的增韧研究进展[J]. 化工新型材料, 2018, 46(9): 21-24.
[3] 曹静, 王永锋, 李兆. 纳米铁氧体的合成方法研究进展[J]. 化工新型材料, 2018, 46(9): 260-262.
[4] 陈敏敏, 张婷, 刘晋. 黏土基催化剂的制备及在处理难降解有机废水中的研究进展[J]. 化工新型材料, 2018, 46(9): 217-220.
[5] 毕永豹, 杨兆哲, 许民. 聚乳酸/麦秸粉复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(8): 269-271.
[6] 王循, 丁玉梅, 李好义, 谭晶, 杨卫民, 阎华. 聚合物电纺纳米纤维高效油污染处理应用研究进展[J]. 化工新型材料, 2018, 46(7): 48-51.
[7] 游胜勇, 戴润英, 董晓娜, 李玲, 谌开红, 陈衍华. 环氧松香封端有机硅聚合物的合成及性能研究[J]. 化工新型材料, 2018, 46(7): 67-69.
[8] 辛成, 陆少锋, 申天伟, 张永生, 肖超鹏. 高导热性微胶囊相变材料的研究进展[J]. 化工新型材料, 2018, 46(7): 1-4.
[9] 任超时, 刘明珠, 张庆华, 詹晓力. 交联网状结构聚硅氧烷类固体电解质的制备及电化学性能研究[J]. 化工新型材料, 2018, 46(5): 208-212.
[10] 朱冠南, 李宁, 程小雨, 赵靓, 王海涛, 税粒珂, 李坚, 汪称意, 任强. 聚甲基丙烯酸N,N-二甲胺基乙酯-b-聚甲基丙烯酸十二氟庚酯嵌段共聚物的合成及其在疏水涂层的应用[J]. 化工新型材料, 2018, 46(5): 238-241.
[11] 崔野, 崔海清, 刘福瑞, 雷良才, 李海英. 可逆加成-断裂链转移聚合-细乳液聚合法合成聚异戊二烯-b-聚苯乙烯-b-聚甲基丙烯酸甲酯三嵌段共聚物[J]. 化工新型材料, 2018, 46(5): 166-169.
[12] 毛郑州, 吴彦城, 汪朝阳. 聚乳酸本质阻燃改性研究进展[J]. 化工新型材料, 2018, 46(4): 43-46.
[13] 陈明辉, 程海峰, 夏成龙, 彭任富, 张朝阳, 刘东青. 可见光与红外兼容伪装材料研究进展[J]. 化工新型材料, 2018, 46(4): 36-38.
[14] 李松彦, 崔健, 朱燕雯, 王行远, 盛扬, 孙一新, Mark Bradley, 张嵘. 吸附活性艳蓝染料的共聚合物的高通量筛选及其吸附性能的研究[J]. 化工新型材料, 2018, 46(4): 152-156.
[15] 李博, 卢明超. 防火涂料阻燃/抑烟技术的研究现状及进展[J]. 化工新型材料, 2018, 46(4): 227-229.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn