Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (8): 67-70    
  新材料与新技术 本期目录 | 过刊浏览 | 高级检索 |
表面处理对芳纶纤维物理和机械性能的影响
王晓晓1, 彭浩凯1,2*, 张晓慧1, 罗贵明1, 李婷婷1, 王煦怡2, 吴利伟1, 姜茜1, 林佳弘1,3,4
1.天津工业大学纺织学院,智慧纺织与节能制品创新平台,天津300387;
2.高技术有机纤维四川省重点实验室,成都610041;
3.闽江学院功能纤维与材料福建省重点实验室,福州350108;
4.逢甲大学纤维与复合材料学系纤维应用与制造实验室,台中40724
Influence of surface treatment on physical and mechanical properties of aramid fiber
Wang Xiaoxiao1, Peng Haokai1,2, Zhang Xiaohui1, Luo Guiming1, Li Tingting1, Wang Xuyi2, Wu Liwei1, Jiang Qian1, Lin Jiahong1,3,4
1.Innovation Platform of Intelligent and Energy-Saving Textiles,School of Textiles,Tianjin Polytechnic University,Tianjin 300387;
2.High-Tech Organic Fibers Key Laboratory of Sichuan Province,Chengdu 610041;
3 Fujian Key Laboratory of Novel Functional Fibers and Materials,Minjiang University,Fuzhou 350108;
4 Laboratory of Fiber Application and Manufacturing,Department of Fiber and Composite Materials,Feng Chia University,Taichung 40724
下载:  PDF (2733KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高界面结合能力,采用空气等离子体对芳纶纤维表面进行改性,通过扫描电子显微镜观察处理前后纤维表面形貌的变化情况,对纤维力学性能及摩擦性能进行测试,优选出最佳处理工艺。进一步研究了纤维表面改性处理方式对纤维集合体力学性能和防刺性能的影响。结果表明:表面改性后芳纶纤维的摩擦系数增大,但强力有所下降,空气等离子体处理最佳条件为50Pa、50W处理5min。芳纶纤维表面经过等离子体改性后,无纺布锥刺的最大压缩载荷同比未处理样品提高了5.27%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓晓
彭浩凯
张晓慧
罗贵明
李婷婷
王煦怡
吴利伟
姜茜
林佳弘
关键词:  芳纶纤维  表面改性  力学性能  防刺性能    
Abstract: In order to improve the interfacial bonding ability,aramid fiber surface was modified by air plasma.The surface morphology of fibers was observed by SEM.The mechanical and tribological properties of fibers were tested to find the optimum treatment process.Then the effect of surface modification on the mechanical properties and stab resistance of fiber aggregate was investigated.The results showed that the friction coefficient of fibers was improved and the strength was decreased after surface modification.The optimum conditions of air plasma treatment were 50Pa pressure,50W power and 5min treatment duration.The awl pierce maximum compression load of non-woven fabrics was increased by 5.27% compared to the untreated sample.
Key words:  aramid fiber    surface modification    mechanical property    stab-resistant property
收稿日期:  2017-03-24                     发布日期:  2018-09-18      期的出版日期:  2018-08-20
基金资助: 高技术四川省重点实验室开放课题基金(PLN2016-07);国家自然青年基金(51503145);天津市2017大学生创新创业训练计划项目(20170058110)
通讯作者:  彭浩凯。   
作者简介:  王晓晓(1991-),男,硕士研究生,主要研究方向为纺织材料。
引用本文:    
王晓晓, 彭浩凯, 张晓慧, 罗贵明, 李婷婷, 王煦怡, 吴利伟, 姜茜, 林佳弘. 表面处理对芳纶纤维物理和机械性能的影响[J]. 化工新型材料, 2018, 46(8): 67-70.
Wang Xiaoxiao, Peng Haokai, Zhang Xiaohui, Luo Guiming, Li Tingting, Wang Xuyi, Wu Liwei, Jiang Qian, Lin Jiahong. Influence of surface treatment on physical and mechanical properties of aramid fiber. New Chemical Materials, 2018, 46(8): 67-70.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I8/67
[1] Yu R,Wang C,Qiu Y.Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy[J].Applied Surface Science,2007,253(23):9283-9289.
[2] 高臣,晏泓,许并社.新型高科技纤维研究进展[J].太原理工大学学报,2009,40(6):573-577.
[3] Patterson B A,Sodano H A.Enhanced interfacial strength and UV shielding of aramid fiber composites through ZnO nanoparticle sizing[J].Acs Applied Materials & Interfaces,2016,8(49):33963-33971.
[4] Demir A,Bozaci E,Gülümser T,et al.An ecological approach for the surface modification of aramid fibers[J].Tekstil Ve Konfeksiyon,2016,26(3):256-261.
[5] Li Z,Cheng X,He S,et al.Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J].Composites Part A:Applied Science & Manufacturing,2016,84(3):316-325.
[6] 饶崛,防弹与防刺纺织材料研究进展[J].中原工学院报,2012,23(1):67-69.
[7] Nair K C M,Thomas S.Effect of interface modification on the mechanical properties of polystyrene-sisal fiber composites[J].Polymer Composites,2010,24(3):332-343.
[8] 严志云,刘安华,贾德民.芳纶纤维的表面处理及其在橡胶工业中的应用[J].橡胶工业,2004,51(1):56-60.
[9] 路向辉.芳纶纤维表面处理技术的发展概况[J].塑料工业,2007,35(Z1):84-86.
[10] 严志云,石虹桥,刘安华,等.空气等离子体处理芳纶纤维及其与天然橡胶/乳聚丁苯橡胶的黏合性能[J].合成橡胶工业,2007,30(3):200-204.
[11] Xu Zhiwei,Chen Li,Huang Yudong,et al.Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/expoy[J].European Polymer Journal,2008,44(2):494-503.
[12] Park S J,Seo M K,Ma T J,et al.Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites[J].Journal of Colloid and Interface Science,2002,252(1):249-255.
[13] Valadez-Gonzalez A,Cervantes-Uc J M,Olayo R,et al.Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites[J].Composites Part B:Engineering,1999,30:309-320.
[14] 宋翠艳,宋西全,邓召良.间位芳纶的技术现状和发展方向[J].纺织学报,2012,33(6):125-128.
[15] 秦伟,张志谦,黄玉东,等.冷等离子体处理对PET纤维/环氧复合材料界面改性的研究[J].复合材料学报,2002,19(4):25-28.
[16] 王杨,李鹏,于运花,等.芳纶纤维的磷酸表面处理及其树脂基复合材料界面性能[J].复合材料学报,2007,24(3):7-12.
[17] 贺泓,孙慕瑾.芳纶纤维的表面改性[J].复合材料学报,1990,7(3):17-25.
[18] 凌新龙,周艳,黄继伟,等.芳纶纤维表面改性研究进展[J].天津工业大学学报,2011,30(3):11-18.
[19] 鲁贻梅,王慧,吕亚非.化学和物理方法处理大麻纤维的研究[J].北京化工大学学报自然科学版,2009,36(5):52-55.
[20] 赵梓年,王立多.天然纤维复合材料中化学方法处理纤维的进展[J].塑料,2009,38(1):35-37.
[21] 罗珺,谢光银,郭双庆.芳纶的酸处理研究与性能测试[J].合成纤维工业,2011,34(1):40-42.
[22] 贾志刚,王玉林,万怡灶.磷酸处理对三维编织芳纶纤维/双马来酰亚胺力学性能的影响[J].玻璃钢/复合材料,2004(6):20-21.
[1] 董广雨, 丁玉梅, 杨卫民, 谢鹏程. 连续碳纤维复合材料热压成型工艺条件优化研究[J]. 化工新型材料, 2018, 46(8): 71-74.
[2] 边策冯, 钠陈茹, 郭界, 孟双. 碳纳米管薄膜的制备及性能研究[J]. 化工新型材料, 2018, 46(8): 75-78.
[3] 白琪俊, 段攀峰, 李扬, 伍玉娇. 芳纶纤维补强吸油膨胀丁苯橡胶的研究[J]. 化工新型材料, 2018, 46(8): 112-114.
[4] 赵思伟, 钱家盛, 苗继斌, 夏茹, 陈鹏, 杨斌. 氢氧化物阻燃剂的改性及其对乙丙橡胶/苯基硅橡胶共混胶性能影响研究[J]. 化工新型材料, 2018, 46(8): 123-126.
[5] 毕永豹, 杨兆哲, 许民. 聚乳酸/麦秸粉复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(8): 269-271.
[6] 陈华, 马永胜, 杨建群. 氟碳树脂基碳浆导电油墨的制备及性能研究[J]. 化工新型材料, 2018, 46(7): 70-73.
[7] 吕展飞, 姚薇, 邵华锋. ETPI/NR并用胶力学性能及动态性能研究[J]. 化工新型材料, 2018, 46(7): 135-138.
[8] 查萌, 张璋, 杨利. 航空用国产高性能PMI泡沫塑料性能研究[J]. 化工新型材料, 2018, 46(6): 70-73.
[9] 谭林朋, 袁光明, 牟明明. 木塑复合材料增强改性研究进展[J]. 化工新型材料, 2018, 46(6): 23-26.
[10] 李根深, 高戈, 朱建平, 冯春花. 纳米材料在水泥基材料中的应用研究进展[J]. 化工新型材料, 2018, 46(6): 15-19.
[11] 戴姗姗, 寇子敏, 刘艳, 彭皓. SiO2/聚丙烯酰胺核壳复合材料的制备研究[J]. 化工新型材料, 2018, 46(6): 135-139.
[12] 李若雪, 张行, 卢丽丽, 许士明, 魏云鹤, 于萍, 张长桥. 纳米级油溶性降黏剂聚甲基丙烯酸十八烷基酯-丙烯酰胺/介孔纳米SiO2的制备及应用[J]. 化工新型材料, 2018, 46(5): 154-157.
[13] 张菲, 耿爱芳, 阎敬灵, 李云辉, 王震. 腰果酚基聚氨酯的合成及性能研究[J]. 化工新型材料, 2018, 46(4): 251-253.
[14] 闫梦雪, 李婷婷, 吕一丹, 吴利伟, 姜茜, 彭浩凯, 林佳弘. 针刺层间增强非织造防刺包装材料的机械及防刺性能研究[J]. 化工新型材料, 2018, 46(4): 216-219.
[15] 龚勇, 代祖洋, 辜其隆, 李琳, 程伟, 胡兴慧, 陈建. 热压改性电纺聚偏氟乙烯隔膜研究[J]. 化工新型材料, 2018, 46(4): 87-89.
[1] Xiao Yu, Lv Cheng, Zhang Guoyou. Epoxy resin modified by PMMA microsphere wrapped by graphene oxide[J]. New Chemical Materials, 2017, 45(9): 62 -64 .
[2] Su Wei, Ran Meng, Zhang Ai, Sun Yan. Preparation of sulfur-doped microporous carbon and its adsorption property[J]. New Chemical Materials, 2018, 46(4): 161 -164 .
[3] Fan Yingge. Study on preparation and optical property of one-dimensional ZnO nanorod by sol-gel dip coating[J]. New Chemical Materials, 2018, 46(4): 189 -192 .
[4] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[5] Lin Yuan. Research status and application progress of thin film solar cells[J]. New Chemical Materials, 2018, 46(6): 57 -60 .
[6] Chen Kai, Wang Qiang, Sun Ting, You Min, Xia Zuxi. Research on impact of chemical etching on superhydrophobic surface property[J]. New Chemical Materials, 2018, 46(6): 206 -209 .
[7] Zheng Dandan, Chang Wei, Xi Qiang, Yu Cuihua. Preparation and photocatalytic activity of Cd1-xZnxS[J]. New Chemical Materials, 2018, 46(5): 181 -183 .
[8] Han Fei, Zong Yue, Di Song, Wang Shaopo. Adsorption of copper ion in aqueous solution by activated boron nitride[J]. New Chemical Materials, 2018, 46(5): 195 -198 .
[9] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
[10] Cai Tingting, Liu Rongwei, Wang Yuanyuan, Zhai Yongxing, Duan Ze, Zhang Jian. Preparation and electrochemical performance test of nickel cobalt sulfide/carbon microsphere electrode[J]. New Chemical Materials, 2018, 46(8): 119 -122 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn