Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (6): 35-38    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
复合相变材料的制备及热性能研究进展
张焕芝1,2, 崔韦唯1, 夏永鹏1, 徐芬1,2, 孙立贤1,2*
1.桂林电子科技大学材料科学与工程学院,桂林541004;
2.桂林电子科技大学广西信息材料重点实验室,桂林541004
Research progress in preparation and thermal performance of composite PCMs
Zhang Huanzhi1,2, Cui Weiwei1, Xia Yongpeng1, Xu Fen1,2, Sun Lixian1,2
1.School of Materials Science and Engineering,Guilin University of Electronic Technology,Guilin 541004;
2.Guangxi Key Laboratory of Information Materials,Guilin University of Electronic Technology,Guilin 541004
下载:  PDF (1120KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变材料能够解决能量供求在时间与空间上不匹配的矛盾,是提高能源利用率和余热回收的有效方式。复合相变材料因其稳定的化学性质和较高的储能密度,成为近年来新材料研究的热点。介绍了复合相变材料的主要制备方法:多孔基体吸附法、微/纳胶囊包覆法、溶胶-凝胶法、高分子复合共聚法和静电纺丝法,讨论了各种制备方法的优势及不足。着重分析了复合相变材料储热性能、热循环稳定性及导热性能的研究进展,为新型高性能复合相变材料的深入研究提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张焕芝
崔韦唯
夏永鹏
徐芬
孙立贤
关键词:  复合相变材料  制备方法  热性能  研究进展    
Abstract: Phase change materials (PCMs) play an important role in solving the imbalance between energy demand and supply as they can absorb and release large amount of heat during phase change procedure.Therefore,using PCMs is an efficient way to substantially improve energy utilization and conserve waste heat.Composite PCMs have been extensively researched due to their stable chemical properties and great heat storage capacity.Preparation methods of the composite PCMs were mainly introduced,including the multi-porous substrate adsorption method,micro/nano encapsulation method,sol-gel method,polymer composite copolymerization and electrospinning method.And the advantages and disadvantages of each method were also discussed.In addition,the progress in energy storage performance,thermal reliability and thermal conductivity of different composite PCMs was emphatically analyzed,and it may provide theoretical basis for further research in novel composite PCMs with high properties.
Key words:  composite phase change materials    preparation methods    thermal performance    research progress
收稿日期:  2018-01-04                出版日期:  2019-06-20      发布日期:  2019-07-05      期的出版日期:  2019-06-20
基金资助: 国家自然科学基金(51863005,51462006,51102230,5187011196,U1501242,51671062);广西自然科学基金(2018GXNSFDA281051,2014GXNSFAA118401,2013GXNSFBA019244);广西科技项目(AD17195073,AA17202030-1)
通讯作者:  孙立贤(1962-),男,教授,博士生导师,研究方向为相变储能材料,储氢材料等。   
作者简介:  张焕芝(1981-),女,研究员,硕士生导师,研究方向为相变储能材料,多孔材料和材料热化学等。
引用本文:    
张焕芝, 崔韦唯, 夏永鹏, 徐芬, 孙立贤. 复合相变材料的制备及热性能研究进展[J]. 化工新型材料, 2019, 47(6): 35-38.
Zhang Huanzhi, Cui Weiwei, Xia Yongpeng, Xu Fen, Sun Lixian. Research progress in preparation and thermal performance of composite PCMs. New Chemical Materials, 2019, 47(6): 35-38.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I6/35
[1] Buker M S,Riffat S B.Solar assisted heat pump systems for low temperature water heating applications:a systematic review[J].Renewable and Sustainable Energy Reviews,2016,55:399-413.
[2] Kenisarin M,Mahkamov K.Passive thermal control in residential buildings using phase change materials[J].Renewable and Sustainable Energy Reviews,2016,55:371-398.
[3] Sari A,Karl¹ A,Alkan C,et al.Polyethyl methacrylate (PEMA)/fatty acids blends as novel phase change materials for thermal energy storage[J].Energy Sources,Part A(Recovery,Utilization,and Environmental Effects),2013,35(19):1813-1819.
[4] Huang Z W,Gao X N,Xu T,et al.Thermal property measurement and heat storage analysis of LiNO3/KCl-expanded graphite composite phase change material[J].Applied Energy,2014,115:265-271.
[5] Zhang N,Yuan Y P,Li T Y,et al.Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage[J].Advances in Mechanical Engineering,2015,7(9):1687-1694.
[6] Tang B T,Wang L J,Xu Y J,et al.Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage[J].Solar Energy Materials and Solar Cells,2016,144:1-6.
[7] Yu H T,Gao J M,Chen Y,et al.Preparation and properties of stearic acid/expanded graphite composite phase change material for low-temperature solar thermal application[J].Journal of Thermal Analysis and Calorimetry,2016,124(1):87-92.
[8] Tang F,Su D,Tang Y J,et al.Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J].Solar Energy Materials and Solar Cells,2015,141:218-224.
[9] Qi G,Yang J,Bao R,et al.Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J].Nano Research,2017,10(3):802-813.
[10] Amin M,Putra N,Kosasih E A,et al.Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J].Applied Thermal Engineering,2017,112:273-280.
[11] 于强强,张丽平.复合相变材料微胶囊的制备及表征[J].化工新型材料,2016,44(2):189-191.
[12] Chen R J,Yao R M,Xia W,et al.Electro/photo to heat conversion system based on polyurethane embedded graphite foam[J].Applied Energy,2015,152(1):183-188.
[13] Li B X,Liu T X,Hu L Y,et al.Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage[J].ACS Sustainable Chemical & Engineering,2013,1(3):374-380.
[14] Zhang H Z,Wang X D.Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation[J].Solar Energy Materials and Solar Cells,2009,93(8):1366-1376.
[15] Malekipirbazari M,Sadrameli S M,Dorkoosh F,et al.Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications[J].International Journal of Energy Research,2014,38(11):1492-1500.
[16] Chen Z,Cao L,Shan F,et al.Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings[J].Energy and Buildings,2013,62:469-474.
[17] Qian T T,Li J H,Ma H W,et al.The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol-gel method[J].Solar Energy Materials and Solar Cells,2015,132:29-39.
[18] Liang S,Li Q B,Zhu Y L,et al.Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion[J].Energy,2015,93:1684-1692.
[19] Peng K L,Chen C Z,Pan W L,et al.Preparation and properties of β-cyclodextrin/4,4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid-solid phase change materials[J].Solar Energy Materials and Solar Cells,2016,145:238-247.
[20] Chen C Z,Liu W M,Wang H W,et al.Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage[J].Applied Energy,2015,152:198-206.
[21] Cai Y B,Gao C T,Xu X L,et al.Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J].Solar Energy Materials and Solar Cells,2012,103:53-61.
[22] Hu W,Yu X.Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure[J].Renewable Energy,2014,62:454-458.
[1] 崔英杰, 马玉芹, 赵学森, 耿爱芳, 杨秀云. 热激活延迟荧光器件性能影响因素研究进展[J]. 化工新型材料, 2019, 47(7): 9-12.
[2] 吕旭, 关明. 爆炸物三过氧化三丙酮检测技术的研究进展[J]. 化工新型材料, 2019, 47(7): 26-30.
[3] 吴洁, 曾丹林. 磺酸型硅基固体酸制备及应用的研究进展[J]. 化工新型材料, 2019, 47(7): 251-256.
[4] 鲍磊, 白永辉, 李凡. 生物质炭材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(7): 54-59.
[5] 孙晓璐, 苏婧, 宋肖飞, 蔡以兵, 张炜栋. 月桂酸-棕榈酸/Al2O3复合定形相变材料的制备与热性能研究[J]. 化工新型材料, 2019, 47(6): 171-175.
[6] 叶心亮, 邵丹, 李向峰. 共轭聚合物传感器研究进展[J]. 化工新型材料, 2019, 47(5): 55-58.
[7] 李玉洋, 章学来, Jotham Muthoka Munyalo, 王迎辉, 周孙希. 低温复合相变材料正辛酸-癸酸的制备及性能分析[J]. 化工新型材料, 2019, 47(5): 127-130.
[8] 班超方, 卢立新, 潘 嘹. 冷冻型复合相变蓄冷材料的制备与性能评价[J]. 化工新型材料, 2019, 47(5): 218-221.
[9] 李刚,吴琳,于奕峰,葛雪松,张萌,姜义军,陈爱兵. 新型环保阻燃抑烟剂羟基锡酸锌的研究进展[J]. 化工新型材料, 2019, 47(4): 226-229.
[10] 高朋,余传柏,杜琳琳,罗海强,李忆秋,韦春. 中空介孔二氧化硅微球的制备及研究进展[J]. 化工新型材料, 2019, 47(3): 31-34.
[11] 尹术帮, 赵凯, 杨杰. 核壳橡胶纳米粒子改性环氧树脂/酸酐体系固化动力学及其性能研究[J]. 化工新型材料, 2019, 47(2): 180-183.
[12] 赵晨曦, 林珩, 王伟山, 郑柏存. 水玻璃/聚氨酯复合材料的研究现状及进展[J]. 化工新型材料, 2019, 47(1): 10-14.
[13] 张建民, 白明鑫, 张继, 李红玑. 多级孔金属有机骨架材料的合成及应用研究进展[J]. 化工新型材料, 2019, 47(1): 15-18.
[14] 宋姗姗, 岳红彦, 高鑫, 王宝, 张宏杰, 关恩昊, 王唯一. Co3O4纳米片阵列的制备方法及其在超级电容器中的应用研究进展[J]. 化工新型材料, 2019, 47(1): 53-56.
[15] 关恩昊, 岳红彦, 高鑫, 王宝, 王婉秋, 王钊, 宋姗姗, 张宏杰. TiO2纳米线(管)-石墨烯的制备方法和应用现状[J]. 化工新型材料, 2018, 46(9): 13-16.
[1] Xiao Yu, Lv Cheng, Zhang Guoyou. Epoxy resin modified by PMMA microsphere wrapped by graphene oxide[J]. New Chemical Materials, 2017, 45(9): 62 -64 .
[2] Niu Yongping, Liu Renhui, Du Sanming, Wang Xiaowei. Influence of POE-g-MAH and 6k carbon fiber on properity of nylon 66[J]. New Chemical Materials, 2018, 46(2): 119 -122 .
[3] Fan Yangyang, Li Bin, Zhang Chen, Chen Liangbing, Liu Yanjun. Preparation property of semi-permanent mold release agent at room temperature[J]. New Chemical Materials, 2018, 46(3): 200 -202 .
[4] Zhou Jing, Hu Lihong, Zhou Yonghong, Bo Caiying, Jia Puyou. Preparation and characterization of lignin-based phenolic molding compound[J]. New Chemical Materials, 2018, 46(4): 78 -81 .
[5] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
[6] Cai Tingting, Liu Rongwei, Wang Yuanyuan, Zhai Yongxing, Duan Ze, Zhang Jian. Preparation and electrochemical performance test of nickel cobalt sulfide/carbon microsphere electrode[J]. New Chemical Materials, 2018, 46(8): 119 -122 .
[7] Chu Ganghui, Ayiguzhalihan Mamat. Study on adsorption of anionic and cationic dyes on surfactant modified badam shell[J]. New Chemical Materials, 2018, 46(8): 202 -205 .
[8] He Longqiang, Fu Keming, Hou Haoyi. Study on preparation and dust suppression of green super absorbent resin based on starch[J]. New Chemical Materials, 2019, 47(2): 256 -263 .
[9] Li Haiyan, Long Xiang, Yang Zhen, Jiang Shuan, Zhang Jianlin, Zhao Lijuan. Study on viscosity impacting factor of titanium dioxide slurry in chloride process[J]. New Chemical Materials, 2019, 47(7): 216 -218 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn