Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (6): 180-183    
  科学研究 本期目录 | 过刊浏览 | 高级检索 |
pH对植物还原法制备钯颗粒形貌的影响
贺媛媛, 傅吉全*
北京服装学院材料科学与工程学院,北京100029
Influence of pH on the morphology of palladium particle produced with plant reduction
He Yuanyuan, Fu Jiquan
School of Materials Science & Engineering,Beijing Institute of Fashion Technology,Beijing 100029
下载:  PDF (6019KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用银杏叶提取液为还原剂,制备钯单质,考察了反应液不同pH对钯颗粒形貌的影响。首先,采用X射线衍射、透射电镜对制备的钯单质颗粒进行表征与分析,证明钯单质生成。其次,通过扫描电镜着重考察钯颗粒微米尺度的形貌情况。结果表明,改变反应液的pH可以调控钯颗粒的尺寸和形貌,生成的钯颗粒具有球状、线状、三角形等规则几何状形貌,并且pH为酸性时有利于制备线状钯颗粒,pH为碱性时有利于制备球状钯颗粒,pH为中性时有利于制备规则几何形状、尺寸较小的钯颗粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺媛媛
傅吉全
关键词:  植物还原法  钯颗粒  pH  形貌    
Abstract: The effect of different pH value on the morphology of palladium particles was investigated by using Ginkgo biloba extract as reducing agent.Firstly,the prepared palladium simple particles were characterized by X-ray diffraction and transmission electron microscopy.Secondly,the morphology of particles was investigated by scanning electron microscopy.The results showed that the pH value of the reaction solution can control the size and morphology of particles.The results showed that the size and morphology can be controlled by changing the pH of the reaction solution.The formed palladium particles had spherical,linear,triangular and other regular geometric shapes.When the pH was acidic,it was advantageous to prepare linear particles.When the pH was alkaline,it was advantageous to prepare spherical particles.When the pH was neutral,it was advantageous to prepare regular shape and smaller size palladium particles.
Key words:  plant reduction method    palladium particle    pH    morphology
收稿日期:  2017-10-23                出版日期:  2019-06-20      发布日期:  2019-07-05      期的出版日期:  2019-06-20
通讯作者:  傅吉全(1957-),男,教授,主要从事化工热力学、反应工程、化学反应工程和催化技术方面的研究。   
作者简介:  贺媛媛(1991-),女,硕士研究生,主要从事反应工程方向的研究。
引用本文:    
贺媛媛, 傅吉全. pH对植物还原法制备钯颗粒形貌的影响[J]. 化工新型材料, 2019, 47(6): 180-183.
He Yuanyuan, Fu Jiquan. Influence of pH on the morphology of palladium particle produced with plant reduction. New Chemical Materials, 2019, 47(6): 180-183.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I6/180
[1] Zheng B Y,Huang J L,Sun D H,et al.Research progress on biosynthetic technology of noble metal nanomaterials[J].Journal of Xiamen University,2011.
[2] Narayanan R,Elsayed M A.Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes:electron-transfer reaction[J].Journal of the American Chemical Society,2004,126(23):7194-5.
[3] 张立德.纳米材料和纳米结构[J].中国科学院院刊,2001,16(6):444-445.
[4] 王大志.纳米材料结构特征[J].功能材料,1993(4):303-305.
[5] 袁哲俊.纳米科学和技术的新进展[J].工具技术,2004,38(9):3-12.
[6] Semagina N,Renken A,Kiwi-Minsker L.Palladium nanoparticle size effect in 1-hexyne selective hydrogenation[J].The Journal of Physical Chemistry C,2007,111(37):13933-13937.
[7] Wilson O M,Knecht M R,Garcia-Martinez J C,et al.Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol[J].Journal of the American Chemical Society,2006,128(14):4510-1.
[8] Dimitratos N,Porta F,Prati L.Au,Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method[J].Applied Catalysis A General,2005,291(1):210-214.
[9] Hou Z,Theyssen N,Brinkmann A,et al.Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide[J].Angewandte Chemie,2010,44(9):1346-1349.
[10] Beller M,Fischer H,Klaus Kühlein,et al.First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems[J].Journal of Organometallic Chemistry,1996,520(1-2):257-259.
[11] Narayanan R,El-Sayed M A.Carbon-supported spherical palladium nanoparticles as potential recyclable catalysts for the Suzuki reaction[J].Journal of Catalysis,2005,234(2):348-355.
[12] Cheong S,Watt J D,Tilley R D.Shape control of platinum and palladium nanoparticles for catalysis[J].Nanoscale,2010,2(10):2045.
[13] Horinouchi S,Yamanoi Y,Yonezawa T,et al.Hydrogen storage properties of isocyanide-stabilized palladium nanoparticles[J].Langmuir,2006,22(4):1880-1884.
[14] Yamauchi M,Ikeda R,Kitagawa H,et al.Nanosize effects on hydrogen storage in palladium[J].Journal of Physical Chemistry C,2016,112(9):3294-3299.
[15] Mubeen S,Zhang T,Yoo B,et al.Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor[J].Journal of Physical Chemistry C,2007,111(17):6321-6327.
[16] Tobiška P,Hugon O,Trouillet A,et al.An integrated optic hydrogen sensor based on SPR on palladium[J].Sensors and Actuators B (Chemical),2001,74(1-3):168-172.
[17] 倪星元.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006.
[18] 徐云龙.纳米材料学概论[M].上海:华东理工大学出版社,2008.
[19] Luo J Y,Wang Y G,Xiong H M,et al.Ordered mesoporous spinel LiMn2O4 by a soft-chemical process asa cathode material for lithium-ion batteries[J].Chemistry of Materials,2007,19(19):4791-4795.
[20] Lim B,Jiang M J,Tao J,et al.Shape-Controlled synthesis of Pd nanocrystals in aqueous solutions[J].Advanced Functional Materials,2010,19(2):189-200.
[21] Huang X,Tang S,Mu X,et al.Freestanding palladium nanosheets with plasmonic and catalytic properties[J].Nature Nanotechnology,2011,6(1):28-32.
[22] Huang X,Zheng N.One-pot,high-yield synthesis of 5-fold twinned Pd nanowires and nanorods[J].Journal of the American Chemical Society,2009,131(13):4602-4603.
[23] Huang X,Tang S,Zhang H,et al.Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals[J].Journal of the American Chemical Society,2009,131(39):13916-13917.
[24] Xiong Y,Mclellan J M,Chen J,et al.Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties[J].Journal of the American Chemical Society,2005,127(48):17118.
[25] Xiong Y,Cai H,Wiley B J,et al.Synthesis and mechanistic study of palladium nanobars and nanorods[J].Journal of the American Chemical Society,2007,129(12):3665-75.
[26] Mohanty A K,Misra M,Vivekanandhan S,et al.Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles[J].Journal of Biomaterials & Nanobiotechnology,2011,03(1):6.
[27] 孙道华,李清彪,贾立山,等.贵金属纳米颗粒及其催化剂的生物还原制备技术[J].现代化工,2009,29(2):32-35.
[28] 张锋,傅吉全.芳樟叶提取液还原制备钯纳米颗粒的研究[J].化工新型材料,2014(1):45-47.
[29] 张锋,傅吉全.银杏叶提取液还原制备钯纳米颗粒的研究[J].化工新型材料,2013,41(8):52-55.
[30] 秦聪丽.植物还原法制备金属纳米颗粒的研究[D].北京:北京服装学院,2016.
[31] 高艺羡.银纳米线的植物还原法制备及其还原—保护成分的研究[D].厦门:厦门大学,2012.
[1] 蒋山泉, 凌立新, 胡承波, 孙向卫, 谢云成. 抗冻pH敏感水凝胶聚α-甲基丙烯酸/丙烯酰胺的制备及性能研究[J]. 化工新型材料, 2019, 47(7): 197-200.
[2] 刘瑞鹏, 贾宪振, 王永顺. 制备方法对HNIW撞击感度影响研究进展[J]. 化工新型材料, 2019, 47(7): 248-250.
[3] 艾芳媛, 刘连利, 孙妍, 马亚勇, 赵晗. 柠檬酸钠对球形NaGd(MoO4)2∶Eu3+纳米晶的溶剂热合成与发光性能影响[J]. 化工新型材料, 2019, 47(6): 102-104.
[4] 都奎山, 杨兵权, 宋恺, 王鉴. SiO2空心球的制备与表面形貌调控[J]. 化工新型材料, 2019, 47(6): 164-167.
[5] 官淑敏, 曹渊, 徐彦芹, 王烨. Ag/AgO/羧甲基壳聚糖抗菌水凝胶制备及其释药性能研究[J]. 化工新型材料, 2019, 47(5): 167-171.
[6] 侯一凡, 王闽颖, 付丽华, 杨华. 基于可逆共价酰腙键制备海藻酸水凝胶及其pH响应性研究[J]. 化工新型材料, 2019, 47(5): 180-184.
[7] 章学易, 吴建荣, 钱倩倩, 牛世伟, 朱利民. 功能化二硫化钼纳米载药复合物的制备及体外药物释放研究[J]. 化工新型材料, 2019, 47(5): 269-272.
[8] 索庆涛,许宝才,王建江,李泽. 雷达吸波材料低频化研究现状及进展[J]. 化工新型材料, 2019, 47(4): 25-28.
[9] 杨陈. 等离子体射频处理对对位芳纶纤维性能的影响[J]. 化工新型材料, 2019, 47(4): 112-114.
[10] 张月义, 丛宗杰, 张大勇, 刘艳艳, 李松峰. 国产QZ5526碳纤维表面活性与截面形状之间的关联研究[J]. 化工新型材料, 2019, 47(2): 146-148.
[11] 刘展晴. 高强度超声波及反应时间对聚苯胺微观结构影响的研究[J]. 化工新型材料, 2018, 46(9): 129-131.
[12] 毕永豹, 杨兆哲, 许民. 聚乳酸/麦秸粉复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(8): 269-271.
[13] 吕瑞, 胡颖媛, 张小超, 王雅文, 王韵芳, 李双志. 可控形貌BiVO4的合成及其光催化性能研究[J]. 化工新型材料, 2018, 46(5): 140-143.
[14] 张海燕, 李根臣, 王义师, 刘亚平, 邵蒙, 刘震宇, 刘晓飞, 魏化震. 碳纤维复合材料结构件自然老化试验研究[J]. 化工新型材料, 2018, 46(4): 63-65.
[15] 徐亮, 赵景, 陈泽旭, 李松彦, 盛扬, 孙一新, 张嵘. 以聚乳酸-b-聚乙二醇-b-聚乳酸二丙烯酸酯为交联剂的pH响应型水凝胶的制备及药物控制释放研究[J]. 化工新型材料, 2018, 46(3): 210-214.
[1] Zhou Cun, Sun Fei. Research of crystallization influence factor of potassium dihydrogen phosphate in aqueous solution[J]. New Chemical Materials, 2017, 45(9): 193 -195 .
[2] Li Genshen, Gao Ge, Zhu Jianping, Feng Chunhua. Research progress of nano material in cement based material[J]. New Chemical Materials, 2018, 46(6): 15 -19 .
[3] Yang Lirong, Li Xiaowu, Wei Chengfu, Zhang Lin, Tang Jie, Chen Bowei. Synthesis and performance analysis of Y3Al5O12 nanopowder by fast combustion method[J]. New Chemical Materials, 2018, 46(6): 115 -118 .
[4] Wang Hui, Zhang Na, Gao Na, Zhao Ruihua, Du Jianping. Research on preparation and application of novel carbon/molybdenum carbide[J]. New Chemical Materials, 2018, 46(9): 246 -249 .
[5] Li Yanjun, Wang Weina, Lv Jian, Du Gai. Theoretical predicition on the structure and property of pentacyclo [5.4.0.02,6.03,10.05,9]undecane and its derivative[J]. New Chemical Materials, 2019, 47(2): 184 -187 .
[6] Ye Jun, Li Xing, Liu Haichun, Qiu Teng ,Li Xiaoyu. Modification of urea-formaldehyde by sodium lignosulfonate prepolymer[J]. New Chemical Materials, 2019, 47(3): 232 -235 .
[7] Wang Meiqi, Yang Fan, Huang Tengteng, Guan Weisheng. Preparation and modification of CaFe2O4photocatalytic material[J]. New Chemical Materials, 2019, 47(7): 237 -240 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn