Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (5): 104-108    
  新材料与新技术 本期目录 | 过刊浏览 | 高级检索 |
聚丙烯腈纳米纤维正渗透支撑层的表面改性研究
孙晚莹, 伍海明, 徐志伟
天津工业大学纺织学院,天津300387
Surface modification of polyamide nanofiber supported layer for forward osmosis
Sun Wanying, Wu Haiming, Xu Zhiwei
School of Textiles,Tianjin Polytechnic University,Tianjin 300387
下载:  PDF (4640KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用静电纺丝法制备聚丙烯腈(PAN)纳米纤维膜,对其进行表面亲水改性,制备出内部疏水、表面亲水的正渗透膜,解决了亲水性纤维在水中高度膨胀导致正渗透膜机械性能大幅下降的问题,考察了水解时间对PAN纳米纤维膜亲水性以及机械性能的影响。研究表明,水解时间为30min时,纳米纤维膜表面基本完全水解,具有较好的表面亲水性能,且内部结构未被破环,保留了原有的机械性能。用PAN纳米纤维膜作为支撑层制备的正渗透膜具有良好的通量和较低的结构系数,且在水中不易膨胀、机械性能良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙晚莹
伍海明
徐志伟
关键词:  正渗透  表面改性  纳米纤维  支撑层  浓差极化    
Abstract: Polyamide nanofiber mat was prepared by electrospinning and then conducted with the surface modification.Hydrophobic polyamide was selected due to high degree swelling of hydrophilic nanofibers in hydrographic environment damaged the strength and structural integrity of fiber.The technological parameter was adjusted to make the hydrophilic surface of nanofiber in order to enhance the water permeability and reduced the internal concentration polarization.The results showed that when the hydrolytic treatment conducted 30min,the surface of nanofiber presented hydrophilic and the internal structure as well as mechanical strength was intact.High water permeability and low structural coefficient was obtained in this way,meanwhile,the fiber swelling was avoid.
Key words:  forward osmosis    surface modification    nanofiber    supported layer    internal concentration polarization
收稿日期:  2017-12-19                     发布日期:  2019-06-17      期的出版日期:  2019-05-20
基金资助: 国家自然科学基金(11575126);天津市自然科学基金(16JCZDJC36400)
作者简介:  孙晚莹(1994-),女,硕士研究生,研究方向为正渗透膜的结构设计。
引用本文:    
孙晚莹, 伍海明, 徐志伟. 聚丙烯腈纳米纤维正渗透支撑层的表面改性研究[J]. 化工新型材料, 2019, 47(5): 104-108.
Sun Wanying, Wu Haiming, Xu Zhiwei. Surface modification of polyamide nanofiber supported layer for forward osmosis. New Chemical Materials, 2019, 47(5): 104-108.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I5/104
[1] Abu-Zeid E R,Zhang Y,Dong H,et al.A comprehensive review of vacuum membrane distillation technique[J].Desalination,2015,356:1-14.
[2] Cath T Y,Childress A E,Elimelech M.Forward osmosis:principles,applications,and recent developments[J].Journal of Membrane Science,2006,281(1):70-87.
[3] Ma N,Wei J,Qi S,et al.Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes[J].Journal of Membrane Science,2013,441(15):54-62.
[4] Yong J S,Phillip W A,Elimelech M.Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes[J].Journal of Membrane Science,2012,392(2):9-17.
[5] Breinig M,Mayer P,Harjung A,et al.Determination of a constant membrane structure parameter in forward osmosis processes[J].Journal of Membrane Science,2011,375(1):241-248.
[6] Lay W C L,Liu Y,Fane A G.Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation:a review[J].Water Research,2010,44(1):21-40.
[7] Liu Q,Li J,Zhou Z,et al.Hydrophilic mineral coating of membrane substrate for reducing internal concentration polarization (ICP) in forward osmosis[J].Scientific Reports,2016,6(10):19593.
[8] 曹鼎,付志峰,李从举.静电纺丝技术在过滤中的应用进展[J].化工新型材料,2011,39(8):15-18.
[9] Song X,Liu Z,Sun D D.Nano gives the answer:breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate[J].Advanced Materials,2011,23(29):3256-3260.
[10] Bui N N,Mccutcheon J R.Nanoparticle-embedded nanofibers in highly permselective thin-film nanocomposite membranes for forward osmosis[J].Journal of Membrane Science,2016,518:338-346.
[11] 姚春梅,黄锋林,魏取福,等.静电纺聚乳酸纳米纤维复合滤料的过滤性能研究[J].化工新型材料,2012,40(4):122-124.
[12] Huang L,Arena J T,Mccutcheon J R.Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis[J].Journal of Membrane Science,2016,499:352-360.
[13] 陈兆文,范海明,管迎梅,等.部分水解PAN纤维的性能研究[J].舰船防化,2007(6):1-6.
[14] Wei J,Qiu C,Tang C Y,et al.Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes[J].Journal of Membrane Science,2011,372(1):292-302.
[15] 徐强.水解条件对聚丙烯腈水解产物结构和性能的影响[D].济南:山东轻工业学院,2010.
[1] 易波, 赵运涛, 李静, 田恩玲, 任以伟. 电纺聚酰亚胺/氧化石墨烯复合纳米纤维膜的制备及性能研究[J]. 化工新型材料, 2019, 47(5): 64-67.
[2] 宋肖飞,蔡以兵,王委委,魏取福,赵宏梅,刘伟. 多孔TiO2纳米纤维的制备及其对染料废水的光催化降解性能研究[J]. 化工新型材料, 2019, 47(4): 263-266.
[3] 孙晶,王瑞,孙红玉,申妮,徐磊. 聚偏氟乙烯超疏水纳米纤维膜的制备及性能研究[J]. 化工新型材料, 2019, 47(4): 115-119.
[4] 杨梅,孙润军. 静电纺壳聚糖/聚乙烯醇纳米纤维膜的制备及表征[J]. 化工新型材料, 2019, 47(4): 120-124.
[5] 刘莹, 郑婷, 林清, 柳思奇, 严帅. 静电纺聚丙烯腈纳米纤维膜的制备及性能研究[J]. 化工新型材料, 2019, 47(3): 55-58.
[6] 冒俊霞,王彦,胡祖明,于俊荣,诸静. 巯基改性碳纳米管的制备与表征[J]. 化工新型材料, 2019, 47(3): 88-93.
[7] 唐爱民,李静,李德贵. 载药纳米纤维素气凝胶的制备及其药物可控释放[J]. 化工新型材料, 2019, 47(3): 193-197.
[8] 李鹏,马晓晓,赵理栋. 活性炭纤维的表面改性及其电化学性能研究[J]. 化工新型材料, 2019, 47(3): 143-148.
[9] 孟亚飞, 裴广玲. 氨基化PAN@SiO2纳米纤维膜除铬性能研究[J]. 化工新型材料, 2019, 47(2): 140-145.
[10] 王其智, 汪滨, 王娇娜, 漆麟, 李从举. 基于静电纺-层层组装技术制备[壳聚糖/海藻酸钠]c/l/聚乙烯醇纳米复合膜[J]. 化工新型材料, 2018, 46(9): 140-143.
[11] 赵然, 高欣宝, 鲁彦玲, 杜风贞, 张力, 刘大志. 反应温度对铝镁合金粉表面硅烷膜形成及性能影响的研究[J]. 化工新型材料, 2018, 46(9): 148-152.
[12] 程金生, 钟瑞敏, 万维宏, 朱建华, 陈信炎. 谷壳源胺基修饰的石墨烯纳米纤维对水样中酸性大红GR脱除性能研究[J]. 化工新型材料, 2018, 46(9): 113-116.
[13] 贾济如, 王潮霞, 殷允杰. 静电纺丝法制备吲哚美辛纳米粒子/聚乙烯醇复合纤维膜[J]. 化工新型材料, 2018, 46(9): 88-90.
[14] 孟亚飞, 裴广玲. 静电纺纳米纤维膜处理重金属离子污水研究进展[J]. 化工新型材料, 2018, 46(8): 281-284.
[15] 刘玥波, 王娇娜, 汪滨, 李从举. 静电纺PA56纳米纤维膜的制备及力学性能研究[J]. 化工新型材料, 2018, 46(8): 149-152.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn