Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (7): 9-13    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
功能化石墨烯材料在气体检测方面的应用研究进展
张星和, 杨晓娜, 符翠丽
保山学院,保山678000
Research progress of functional graphene material for gas-detecting application
Zhang Xinghe, Yang Xiaona, Fu Cuili
Baoshan University,Baoshan 678000;
下载:  PDF (1212KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种具有单原子层厚度的二维蜂窝状碳材料,由于其具有奇异的比表面积效应、光电效应和机械强度等优点,在能源、环境、军事和航天等领域得到了大量的研究。石墨烯材料的功能化可对其结构、物化性质和光电性质等方面进行有益调整,从而拓宽了其对化学物质的检测范围。主要综述了近期利用化学改性、纳米颗粒修饰和聚合物复合方法对石墨烯材料进行功能化改性的研究进展,以及功能化石墨烯材料在提高灵敏度和选择性等气体传感特性方面的应用,并对该领域存在的挑战和前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张星和
杨晓娜
符翠丽
关键词:  石墨烯  改性  修饰  混合气体检测    
Abstract: Graphene,a two-dimensional carbon material only with a structure of honeycomb lattice which having a single-atom-thick layer,has attractive much research in many fields including energy,environment,military and aerospace,due to its fantastic properties of specific surface,photoelectric effect and mechanical strength.Functionalizing endows graphene favorable tailors such as the structure,physicochemical and photoelectrical properties,extending the detecting range of chemical species.It was discussed that the recent advancements in the functionalizing of graphene utilizing the methods of chemical modification,nanoparticle decoration and polymer hybrid,and the applications of functional graphene materials in improved gas sensing properties including sensitivity and selectivity.Finally,the remaining challenges and perspectives of this enticing field were provided.
Key words:  grapheme    modification    decoration    hybrid gas-detecting
收稿日期:  2017-03-15                出版日期:  2018-07-20      发布日期:  2018-08-07      期的出版日期:  2018-07-20
基金资助: 保山学院校级课题(14BZ004)
作者简介:  张星和(1985-),女,硕士研究生,助教,主要研究方向为功能材料制备。
引用本文:    
张星和, 杨晓娜, 符翠丽. 功能化石墨烯材料在气体检测方面的应用研究进展[J]. 化工新型材料, 2018, 46(7): 9-13.
Zhang Xinghe, Yang Xiaona, Fu Cuili. Research progress of functional graphene material for gas-detecting application. New Chemical Materials, 2018, 46(7): 9-13.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I7/9
[1] Patra M K,Manzoor K,Manoth M,et al.Nanotechnology applications for chemical and biological sensors[J].Defence Science Journal,2008,58(5):636-649.
[2] Sharma S,Madou M.A new approach to gas sensing with nanotechnology[J].Phil Trans R Soc A,2012,370(1967):2448-2473.
[3] Varghese S H,Nair R,Nair B G,et al.Sensors based on carbon nanotubes and their applications:a review[J].Current Nanoscience,2010,6(4):331-346.
[4] Hill E W,Vijayaragahvan A,Novoselov K.Graphene sensors[J].IEEE Sensors Journal,2011,11(12):3161-3170.
[5] Mao S,Lu G H,Chen J H.Nanocarbon-based gas sensors:progress and challenges[J].Journal of Materials Chemistry A,2014,2(16):5573-5579.
[6] Llobet E.Gas sensors using carbon nanomaterials:a review[J].Sensors and Actuators B:Chemical,2013,179:32-45.
[7] Hu P A,Zhang J,Li L,et al.Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors[J].Sensors,2010,10(5):5133-5159.
[8] Yuan W J,Shi G Q.Graphene-based gas sensors[J].Journal of Materials Chemistry A,2013,1(35):10078-10091.
[9] He Q Y,Wu S X,Yin Z Y,et al.Graphene-based electronic sensors[J].Chemical Science,2012,3(6):1764-1772.
[10] Liu Y X,Dong X C,Chen P.Biological and chemical sensors based on graphene materials[J].Chemical Society Reviews,2012,41(6):2283-2307.
[11] Basu S,Bhattacharyya P.Recent developments on graphene and graphene oxide based solid state gas sensors[J].Sensors and Actuators B:Chemical,2012,173:1-21.
[12] Yavari F,Koratkar N.Graphene-based chemical sensors[J].Journal of Physical Chemistry Letters,2012,3:1746-1753.
[13] Zhou L,Shen F,Tian X,et al.Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity[J].Nanoscale,2013,5(4):1564-1569.
[14] Cui S,Pu H,Mattson E C,et al.Ag nanocrystal as a promoter for carbon nanotube-based room-temperature gas sensors[J].Nanoscale,2012,4(19):5887-5894.
[15] Cui S,Pu H,Lu G,et al.Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes[J].ACS Applied Materials and Interfaces,2012,4(9):4898-4904.
[16] Dong X C,Fu D L,Fang W J,et al.Doping single-layer graphene with aromatic molecules[J].Small,2009,5(12):1422-1426.
[17] Dong X C,Long Q,Wei A,et al.The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound[J].Carbon,2012,50(4):1517-1522.
[18] Georgakilas V,Otyepka M,Bourlinos A B,et al.Functionalization of graphene:covalent and non-covalent approaches,derivatives and applications[J].Chem Rev,2012,112(11):6156-6214.
[19] Lv R T,Terrones M.Towards new graphene materials:doped graphene sheets and nanoribbons[J].Mater Lett,2012,78:209-218.
[20] Maiti U N,Lee W J,Lee J M,et al.25th Anniversary article:chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices[J].Adv Mater,2014,26(1):40-67.
[21] Kong X K,Chen C L,Chen Q W.Doped graphene for metal-free catalysis[J].Chem SocRev,2014,43(8):2841-2857.
[22] Wang D W,Su D S.Heterogeneous nanocarbon materials for oxygen reduction reaction[J].Energy Environ Sci,2014,7(2):576-591.
[23] Usachov D,Vilkov O,Grüneis A,et al.Nitrogen-doped graphene:efficient growth,structure,and electronic properties[J].Nano Letters,2011,11(12):5401-5407.
[24] Niu F,Tao L M,Deng Y C,et al.Phosphorus doped graphene nanosheets for room temperature NH3 sensing[J].New Journal of Chemistry,2014,38(6):2269-2272.
[25] Lv R T,Chen G G,Li Q,et al.Ultrasensitive gas detection of large-area boron-doped grapheme[J].Proceedings of the National Academy of Sciences,2015,112(47):14527-14532.
[26] Niu F,Liu J M,Tao L M,et al.Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing[J].Journal of Materials Chemistry A,2013,1(20):6130-6133.
[27] Su P G,Shieh H C.Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide[J].Sensors and Actuators B:Chemical,2014,190:865-872.
[28] Yoo S,Li X,Wu Y,et al.Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature[J].Journal of Nanomaterials,2014,2014:1-6.
[29] Kaniyoor A,Jafri R I,Arockiadoss T,et al.Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor[J].Nanoscale,2009,1(3):382-386.
[30] Li W W,Geng X M,Guo Y F,et al.Reduced graphene oxide wlectrically contacted graphene sensor for highly sensitive nitric oxide detection[J].ACS Nano,2011,5(9):6955-6961.
[31] Gutes A,Hsia B,Sussman A,et al.Graphene decoration with metal nanoparticles:towards easy integration for sensing applications[J].Nanoscale,2012,4(2):438-440.
[32] Chung M G,Kim D H,Seo D K,et al.Flexible hydrogen sensors using graphene with palladium nanoparticle decoration[J].Sensors and Actuators B:Chemical,2012,169:387-392.
[33] Pak Y,Kim S M,Jeong H,et al.Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons[J].ACS Applied Materials & Interfaces,2014,6(15):13293-13298.
[34] Mao S,Cui S M,Lu G H,et al.Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals[J].Journal of Materials Chemistry,2012,22:11009-11013.
[35] Liu S,Yu B,Zhang H,et al.Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids[J].Sensors and Actuators B:Chemical,2014,202:272-278.
[36] Zhang H,Feng J C,Fei T,et al.SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature[J].Sensors and Actuators B:Chemical,2014,190:472-478.
[37] Huang L,Wang Z P,Zhang J K,et al.Fully printed,rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature[J].ACS Applied Materials & Interfaces,2014,6(10):7426-7433.
[38] Mohammadi-Manesh E,Vaezzadeh M,Saeidi M.Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature[J].Surface Science,2015,636:36-41.
[39] Bai S L,Chen C,Luo R X,et al.Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J].Sensors and Actuators B:Chemical,2015,216:113-120.
[40] Meng H,Yang W,Ding K,et al.Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature[J].Journal of Materials Chemistry A,2015,3(3):1174-1181.
[41] Wang C,Liang S M,Bi H P,et al.Reduced graphene oxide decorated with CuO-ZnO hetero-junctions:towards high selective gas-sensing property to acetone[J].Journal of Materials Chemistry A,2014,2(43):18635-18643.
[42] Cui S M,Wen Z H,Mattson E C,et al.Indium-doped SnO2 nanoparticle-graphene nanohybrids:simple one-pot synthesis and their selective detection of NO2[J].Journal of Materials Chemistry A,2013,1(14):4462-4467.
[43] Mangu R,Rajaputra S,Singh V P.MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors[J].Nanotechnology,2011,22(21):215502-215512.
[44] Srivastava S,Sharma S S,Agrawal S,et al.Study of chemiresistor type CNT doped polyaniline gas sensor[J].Synthetic Metals,2010,160(5-6):529-534.
[45] Huang X L,Hu N T,Gao R G,et al.Reduced graphene oxide-polyaniline hybrid:preparation,characterization and its applications for ammonia gas sensing[J].Journal of Materials Chemistry,2012,22(42):22488-22495.
[46] Parmar M,Balamurugan C,Lee D W.PANI and graphene/PANI nanocomposite films-comparative toluene gas sensing behavior[J].Sensors,2013,13(12):16611-16624.
[47] Ye Z B,Jiang Y D,Tai H L,et al.The investigation of reduced graphene oxide/P3HT composite films for ammonia detection[J].Integrated Ferroelectrics,2014,154(1):73-81.
[48] Xie T,Xie G Z,Zhou Y,et al.Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection[J].Chemical Physics Letters,2014,614:275-281.
[49] Mishra S K,Tripathi S N,Choudhary V,et al.SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization[J].Sensors and Actuators B:Chemical,2014,199:190-200.
[50] Hong J,Lee S,Seo J,et al.A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid[J].ACS Applied Materials & Interfaces,2015,7(6):3554-3561.
[51] Yang Y J,Yang X J,Yang W Y,et al.Porous conducting polymer and reduced graphene oxide nanocomposites for room temperature gas detection[J].RSC Adv,2014,4(80):42546-42553.
[52] Seekaew Y,Lokavee S,Phokharatkul D,et al.Low-cost and flexible printed grapheme-PEDOT:PSS gas sensor for ammonia detection[J].Organic Electronics,2014,15(11):2971-2981.
[1] 陈静, 杨建军, 吴庆云, 张建安, 吴明元. 纳米SiO2改性聚四氟乙烯复合材料的研究进展[J]. 化工新型材料, 2018, 46(8): 1-4.
[2] 傅深娜. 石墨烯/层状双氢氧化物纳米复合材料在超级电容器中的应用研究[J]. 化工新型材料, 2018, 46(8): 5-8.
[3] 曾斌, 曾武军, 陈丹, 刘万锋, 金灿. 通用法制备石墨烯负载超细硫化锌(镉)及在水污染处理中的应用[J]. 化工新型材料, 2018, 46(8): 25-28.
[4] 梁有维, 李世友, 李春雷, 解静, 雷丹. 锂离子电池富锂锰基正极材料的研究进展[J]. 化工新型材料, 2018, 46(8): 46-50.
[5] 王晓晓, 彭浩凯, 张晓慧, 罗贵明, 李婷婷, 王煦怡, 吴利伟, 姜茜, 林佳弘. 表面处理对芳纶纤维物理和机械性能的影响[J]. 化工新型材料, 2018, 46(8): 67-70.
[6] 陈萍, 刘婷, 姚凯波, 袁国秋, 石磊, 葛存旺. 石墨烯量子点修饰TiO2复合纳米材料的制备及其光电性能研究[J]. 化工新型材料, 2018, 46(8): 79-84.
[7] 赵思伟, 钱家盛, 苗继斌, 夏茹, 陈鹏, 杨斌. 氢氧化物阻燃剂的改性及其对乙丙橡胶/苯基硅橡胶共混胶性能影响研究[J]. 化工新型材料, 2018, 46(8): 123-126.
[8] 林海亚, 姚成. 氧化石墨烯对氢化二聚酸尼龙力学性能的影响[J]. 化工新型材料, 2018, 46(8): 133-135.
[9] 吴双桃, 朱慧, 王桔红. 化学改性大薸对水中重金属离子的生物吸附及表征[J]. 化工新型材料, 2018, 46(8): 142-145.
[10] 楚刚辉, 阿依古扎力汗·麦麦提. 表面活性剂改性巴旦木壳对阴阳离子染料的吸附研究[J]. 化工新型材料, 2018, 46(8): 202-205.
[11] 黄中航, 夏璐, 邓啟敏. 三乙烯四胺基蔗渣纤维素对Cr(Ⅵ)的吸附性能研究[J]. 化工新型材料, 2018, 46(8): 206-210.
[12] 辛成, 陆少锋, 申天伟, 张永生, 肖超鹏. 高导热性微胶囊相变材料的研究进展[J]. 化工新型材料, 2018, 46(7): 1-4.
[13] 刘勇智, 陈国力, 王雅珍, 殷广明. 改性纳米粒子及高分子吸附材料的研究进展[J]. 化工新型材料, 2018, 46(7): 14-17.
[14] 李春雷, 解莹春, 李祥飞. 磷酸铁锂正极材料的制备及改性研究进展[J]. 化工新型材料, 2018, 46(7): 25-28.
[15] 王晓亮, 张佳齐, 杨绍斌, 洪晓东, 闫慧妍. 水滑石/石墨烯超级电容器电极材料的制备研究进展[J]. 化工新型材料, 2018, 46(7): 29-33.
[1] Su Wei, Ran Meng, Zhang Ai, Sun Yan. Preparation of sulfur-doped microporous carbon and its adsorption property[J]. New Chemical Materials, 2018, 46(4): 161 -164 .
[2] Fan Yingge. Study on preparation and optical property of one-dimensional ZnO nanorod by sol-gel dip coating[J]. New Chemical Materials, 2018, 46(4): 189 -192 .
[3] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[4] Zheng Dandan, Chang Wei, Xi Qiang, Yu Cuihua. Preparation and photocatalytic activity of Cd1-xZnxS[J]. New Chemical Materials, 2018, 46(5): 181 -183 .
[5] Han Fei, Zong Yue, Di Song, Wang Shaopo. Adsorption of copper ion in aqueous solution by activated boron nitride[J]. New Chemical Materials, 2018, 46(5): 195 -198 .
[6] Wang Yufei, Zheng Liping, Yao Jianhua, Li Jingjing. Novel progress of fluorofullerene applied in electronic material and device[J]. New Chemical Materials, 2018, 46(7): 5 -8 .
[7] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn