Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (7): 34-39    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池硅-碳负极材料的研究进展
朱瑞, 邓卫斌, 李军, 廉培超, 谢德龙*, 梅毅*
昆明理工大学化学工程学院,云南省高校磷化工重点实验室,昆明650500
Research progress of silicon-carbon cathode material for lithium ionic battery
Zhu Rui, Deng Weibin, Li Jun, Lian Peichao, Xie Delong, Mei Yi
Faculty of Chemical Engineering,Kunming University of Science and Technology,The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province,Kunming 650500;
下载:  PDF (1242KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅基负极材料因具有较高的理论储锂容量,将替代传统的石墨负极材料成为下一代锂离子电池最有前景的负极材料之一。然而,硅作为负极材料体积膨胀率(可达到300%)大、导电率低、易被电解液分解产生的HF腐蚀,这些缺点限制了其在商业应用中的发展。碳具有稳定性高、导电性好、价格低、来源广等优点,但其理论储锂容量较低,仅约为硅的1/10。为解决锂离子电池硅材料存在的问题,目前主要采用将硅与碳进行复合的办法,制备出储电量高、导电性好、循环性能优异的硅-碳复合负极材料。重点从硅碳复合结构和制备方法两个方面阐述了硅-碳复合负极材料的研究进展,认为“鸡蛋”结构能够有效地提高循环性能和安全性能,但是目前仍然不能够规模化生产。最后提出研究发展思路,应用胶体颗粒共凝胶法设计制备了一种特殊的硅-碳复合核壳结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱瑞
邓卫斌
李军
廉培超
谢德龙
梅毅
关键词:  锂离子电池  纳米硅-碳复合材料  负极  复合结构  制备方法    
Abstract: Silicon-based cathode materials have become one of the most promising lithium ion cathode materials for the next generation Li-ion batteries to substitute traditional graphite cathode because of high theoretical lithium storage capacity.However,silicon as a negative material,the large volume expansion (up to 300%),the low conductivity and the corrodibility which could react with HF from the electrolyte,those all limit its development in commercial applications.Carbon has the advantages such as high stability,good conductivity,low price,wide source and so on.But the theoretical capacity of carbon storage is low,only about one tenth of that of silicon.In order to solve the problems of lithium ion battery silicon material,the main method is to combine silicon and carbon to produce silicon-carbon composite cathode with high storage capacity,good conductivity and excellent cyclicity.The thesis set forth the research process of silicon-carbon composite cathode materials which was mainly from two aspects that silicon-carbon composite structure and preparation methods.The scientists think that “egg” structure can effectively improve the cycle and safety performance,but it was still not able to go into mass production.Finally,the thesis putted forward some ideas of mine and development of the project group:design a special kind of silicon-carbon composite with core-shell structure using colloide particles with gel technique.
Key words:  lithium ionic battery    nano silicon-carbon composite    negative electrode    composite structure    preparation method
收稿日期:  2018-03-02                出版日期:  2018-07-20      发布日期:  2018-08-07      期的出版日期:  2018-07-20
基金资助: 国家自然科学地区基金(21663015);国家自然科学青年基金(51603096)
通讯作者:  谢德龙,男,教授,主要从事胶体科学与工程基础及应用研究。梅毅,男,教授,主要从事磷化工先进技术的开发与应用研究。   
作者简介:  朱瑞(1992-),男,硕士研究生,主要从事锂离子电池硅碳复合负极材料的制备及其应用研究。
引用本文:    
朱瑞, 邓卫斌, 李军, 廉培超, 谢德龙, 梅毅. 锂离子电池硅-碳负极材料的研究进展[J]. 化工新型材料, 2018, 46(7): 34-39.
Zhu Rui, Deng Weibin, Li Jun, Lian Peichao, Xie Delong, Mei Yi. Research progress of silicon-carbon cathode material for lithium ionic battery. New Chemical Materials, 2018, 46(7): 34-39.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I7/34
[1] Armand M,Tarascon J M.Building better batteries[J].Nature,2008,451(7179):652-657.
[2] Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.
[3] 李劲,邵威,毛洪仁,等.废弃锂离子电池回收处理的污染物分析[J].化工进展,2016,35(5):1529-1538.
[4] 周丹,梁风,姚耀春,等.锂离子电池电解液负极成膜添加剂的研究进展[J].化工进展,2016,35(5):1477-1483.
[5] 王仙宁,凌锋,潘薇,等.锂离子电池负极材料中国专利分析[J].化工进展,2016,35(1):336-339.
[6] Megahed S,Scrosati B.Lithium-ion rechargeable batteries[J].Journal of Power Sources,1994,51(1/2):79-104.
[7] Luo F,Liu B,Zheng J,et al.Review-Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J].Journal of The Electrochemical Society,2015,162(14):A2509-A2528.
[8] Feng X J,Yang J,Gao P F,et al.Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithiumion batteries[J].Rsc Advances,2012,2(13):5701-5706.
[9] Farhan S,Wang R,Jiang H,et al.A novel method for the processing of carbon foam containing in situ grown nano-materials and silicon nanowires[J].Materials Letters,2015,159:439-442.
[10] Chan C K,Peng H,Liu G,et al.High-performance lithium battery anodes using silicon nanowires[M]//Materials For Sustainable Energy:A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group,2007,3(1):187-191.
[11] Cui L F,Yang Y,Hsu C M,et al.Carbon-silicon core-shell nanowires as high capacity electrode for lithium-ion batteries[J].Nano Letters,2009,9(9):3370-3374.
[12] Andreas K,Jan B,Susanne D,et al.Stability and performance of heterogeneous anode assemblies of silicon nanowires on carbon meshes for lithium-sulfur battery applications[J].MRS Proceedings,2015,1751.
[13] Kim H,Cho J.Superior lithium electroactive mesoporous Si-carbon core-shell nanowires for lithium battery anode material[J].Nano Letters,2008,8(11):3688-3691.
[14] Huang B R,Yang Y K,Lin T C,et al.Core/shell structure of a silicon nanorod/carbon nanotube field emission cathode[J].Journal of Nanomaterials,2011,2012(2012):7-12.
[15] Lee B S,Son S B,Park K M,et al.Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode[J].Journal of Power Sources,2012,206(2):267-273.
[16] Jung D W,Kim K H,Lee J,et al.In situ synthesis and cell performance of a Si/C core-shell/ball-milled graphite composite for lithium ion batteries[J].Journal of Nanoscience & Nanotechnology,2013,13(12):7855-7859.
[17] Liu N,Wu H,Mcdowell M T,et al.A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J].Nano Letters,2012,12(6),3315-3321.
[18] Yin Y X,Xin S,Wan L J,et al.Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries[J].Journal of Physical Chemistry C,2011,115(29):14148-14154.
[19] Cui L F,Yang Y,Cui Y,et al.Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J].Nano Letters,2009,9(9):3370-3374.
[20] Magasinski A,Dixon P,Hertzberg B,et al.High-performance lithium-ion anodes using a hierarchical bottom-up approach[J].Nature Materials,2010,9(4):353-358.
[21] Chen Y J,Nie M Y,Lucht B,et al.High capacity,stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly[J].ACS applied materials & interfaces,2014,6(7):4678-4683.
[22] Wu H,Yu G,Pan L,et al.Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J].Nature Communications,2015,4(3):1943.
[23] Pan L,Yu G,Lee H R,et al.Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(24):9287-9292.
[24] Kovalenko.A major constituent of brown algae for use in high-capacity Li-ion batteries[J].Science,2011,334(6052):75-79.
[25] Mazouzi D,Lestriez B,Roue L,et al.Silicon composite electrode with high capacity and long cycle life[J].Electrochemical and Solid-State Letters,2009,12(11):A215-A218.
[26] Wen Z S,Yang J.High capacity silicon/carbon composite anode materials for lithiumion batteries[J].Electrochemistry Communications,2003,5(2):165-168.
[27] Holzapfel M,Buqa H,Krumeich F,et al.Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries[J].Electrochemical and Solid-State Letters,2005,8(10):A516-A520.
[28] Zheng Y,Yang J.Nano-porous Si/C composites for anode material of lithium-ion batteries[J].Electrochimica Acta,2007,52(19):5863-5867.
[29] Cahen S,Janot R,Laffont-Dantras L,et al.Chemical reduction of SiCl4 for the preparation of silicon-graphite composites used as negative electrodes in lithium-ion batteries[J].Journal of The Electrochemical Society,2008,155(7):A512-A519.
[30] Janot R,Conard J,Guérard D,et al.Ball milling:a new route for the synthesis of superdense lithium GICs[J].Carbon,2001,39(12):1931-1934.
[31] Avdeev V V,Nalimova V A,Semenenko K N,et al.The alkali metals in graphite matrixes new aspects of metallic state chemistry[J].High Pressure Research,1990,6(1):11-25.
[32] Chou S L,Wang J Z,Choucair M,et al.Enhanced reversible lithium storage in a nanosize silicon/graphene composite[J].Electrochemistry Communications,2010,12(2):303-306.
[33] Yang S,Li G,Zhu Q,et al.Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode[J].Journal of Materials Chemistry,2012,22(8):3420-3425.
[34] Evanoff K,Magasinski A,Yang J,et al.Nanosilicon-coated graphene granules as anodes for Li-ion batteries[J].Advanced Energy Materials,2011,1(4):495-498.
[35] 陈坚,徐晖.石墨烯及其纳米复合材料作为锂离子电池负极的研究进展[J].材料导报,2017,31(9):36-44.
[36] Wang J Z,Zhong C,Chou S L,et al.Flexible free-standing graphene-silicon composite film for lithium-ion batteries[J].Electrochemistry Communications,2010,12(11):1467-1470.
[37] Liu Z,Guo P,Liu B,et al.Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode[J].Applied Surface Science,2017,396:41-47.
[38] Li X L,Meduri P.Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes[J].Journal of Materials Chemistry,2012,22(22):11014-11017.
[39] 高鹏飞,杨军.锂离子电池硅复合负极材料研究进展[J].化工进展,2011,23(2):264-274.
[40] Luo Z,Fan D,Liu X,et al.High performance silicon carbon composite anode materials for lithium ion batteries[J].Journal of Power Sources,2009,189(1):16-21.
[41] Wang W,Epur R,Kumta P N,et al.Vertically aligned silicon/carbon nanotube (VASCNT) arrays:hierarchical anodes for lithium-ion battery[J].Electrochemistry Communications,2011,13(5):429-432.
[42] Casimir A,Zhang H G,Ogoke O,et al.Silicon-based anodes for lithium-ion batteries:effectiveness of materials synthesis and electrode preparation[J].Nano Energy,2016,27:359-376.
[43] Thess A,Lee R,Nikolaev P,et al.Crystalline ropes of metallic carbon nanotubes[J].Science,1996,273(5274):483-487.
[44] Zhou Y,Guo H,Yang Y,et al.Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries[J].Materials Letters,2016,168(20):138-142.
[45] Gao P F,Nuli Y N,He Y S,et al.Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries[J].Chemical Communications,2010,46(48):9149-9151.
[46] Fecht H J,Hellstern E,Fu Z,et al.Nanocrystalline metals prepared by high-energy ball milling[J].Metallurgical Transactions A,1990,21(9):2333-2337.
[47] Sun W,Hu R,Zhang M,et al.Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries[J].Journal of Power Sources,2016,318:113-120.
[48] Wang G X,Yao J,Liu H K,et al.Characterization of nanocrystalline Si-MCMB composite anode materials[J].Electrochemical and Solid-State Letters,2004,7(8):A250-A253.
[49] Morita T,Takami N.Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J].Journal of The Electrochemical Society,2006,153(2):A425-A430.
[50] Xu Y H,Zhu Y J,Wang C S,et al.Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries[J].Journal of Materials Chemistry A,2014,2(25):9751-9757.
[51] Wang G X,Ahn J H,Yao J,et al.Nanostructured Si-C composite anodes for lithium-ion batteries[J].Electrochemistry Communications,2004,6(7):689-692.
[52] Pekala R W.Organic aerogels from the polycondensation of resorcinol with formaldehyde[J].Journal of Materials Science,1989,24(9):3221-3227.
[53] Werstler D D.Quantitative 13C-NMR characterization of aqueous formaldehyde resins:2.Resorcinol-formaldehyde resins[J].Polymer,1986,27(5):757-764.
[54] Xin X,Zhou X,Wang F,et al.A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries[J].Journal of Materials Chemistry,2012,22(16):7724-7730.
[55] Yang S,Li G,Zhu Q,et al.Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode[J].Journal of Materials Chemistry,2012,22(8):3420-3425.
[1] 傅深娜. 石墨烯/层状双氢氧化物纳米复合材料在超级电容器中的应用研究[J]. 化工新型材料, 2018, 46(8): 5-8.
[2] 吕文俊, 张海朗, 李道荣, 李倩倩. 锂离子电池负极材料Li4Ti5O12的固相法制备及性能研究[J]. 化工新型材料, 2018, 46(8): 146-148.
[3] 田林, 黄俊, 李荣兴, 李威, 谢刚, 杨妮, 俞小花. 氯化法制备纳米TiO2氧化机理的研究进展[J]. 化工新型材料, 2018, 46(8): 238-243.
[4] 贾栓柱, 杜仕国, 闫军. 纳米铝热剂的制备与应用研究现状[J]. 化工新型材料, 2018, 46(8): 261-264.
[5] 白玉, 雷云裕, 刘文慧, 常宏宏, 殷澍, 赵志换. W18O49的制备、性能和应用研究进展[J]. 化工新型材料, 2018, 46(7): 52-55.
[6] 任超时, 刘明珠, 张庆华, 詹晓力. 交联网状结构聚硅氧烷类固体电解质的制备及电化学性能研究[J]. 化工新型材料, 2018, 46(5): 208-212.
[7] 戴剑锋, 闫兴山, 田西光, 李维学, 王青. 静电纺丝法制备尖晶石型LiMn2O4纳米纤维锂离子电池正极材料[J]. 化工新型材料, 2018, 46(5): 204-207.
[8] 徐保明, 张弘, 唐强, 张家晖, 李俊, 李志鹏, 陈坤. 木质素基碳纤维制备方法的研究进展[J]. 化工新型材料, 2018, 46(4): 23-26.
[9] 姜志国, 于丰, 张均, 姚明, 夏春蕾, 杨晶. 树脂透光混凝土的制备方法及研究进展[J]. 化工新型材料, 2018, 46(3): 235-238.
[10] 李林, 刘振新, 徐蓓, 李晶晶, 吴德鹏, 李鸿阳, 张晓, 姚纪伟, 邵晨, 贾巧娟, 方少明, 王力臻, 邢宇. 节省锂资源的磷酸铁锂水热合成路径[J]. 化工新型材料, 2018, 46(3): 187-189.
[11] 汪燕鸣, 朱波, 刘晓玉, 陈盛, 王飞,. 溶剂热法合成纳米磷酸钴锰锂正极材料及其电化学性能研究[J]. 化工新型材料, 2018, 46(3): 175-177.
[12] 何冀川, 王红, 周天明, 喻国强, 刘树信. 固相法合成LiNi0.8Co0.15Al0.05O2正极材料及其电化学性能研究[J]. 化工新型材料, 2018, 46(3): 160-163.
[13] 徐莲花, 王启昌. 锂离子电池正极材料磷酸钒锂的改性研究进展[J]. 化工新型材料, 2018, 46(3): 49-52.
[14] 畅波, 李亚娥, 康利涛, 梁伟, 赵兴国. 核壳结构Si/C复合负极材料的制备与储锂性能研究[J]. 化工新型材料, 2018, 46(2): 79-82.
[15] 齐美洲, 汪志全, 李道聪, 杨茂萍. LiMn1-xFexPO4正极材料制备方法的研究进展[J]. 化工新型材料, 2018, 46(2): 59-62.
[1] Su Wei, Ran Meng, Zhang Ai, Sun Yan. Preparation of sulfur-doped microporous carbon and its adsorption property[J]. New Chemical Materials, 2018, 46(4): 161 -164 .
[2] Fan Yingge. Study on preparation and optical property of one-dimensional ZnO nanorod by sol-gel dip coating[J]. New Chemical Materials, 2018, 46(4): 189 -192 .
[3] Zheng Zhen, Ding Chengli, Li Huiping, Fu Jingjing. Synthesis and property of hydrophobic functionalized cotton linter cellulose/SiO2 composite aerogel[J]. New Chemical Materials, 2018, 46(4): 230 -233 .
[4] Zheng Dandan, Chang Wei, Xi Qiang, Yu Cuihua. Preparation and photocatalytic activity of Cd1-xZnxS[J]. New Chemical Materials, 2018, 46(5): 181 -183 .
[5] Han Fei, Zong Yue, Di Song, Wang Shaopo. Adsorption of copper ion in aqueous solution by activated boron nitride[J]. New Chemical Materials, 2018, 46(5): 195 -198 .
[6] Wang Yufei, Zheng Liping, Yao Jianhua, Li Jingjing. Novel progress of fluorofullerene applied in electronic material and device[J]. New Chemical Materials, 2018, 46(7): 5 -8 .
[7] Chang Lin, Zhao Yuntao, Bi Yinping, Ren Yiwei. Preparation and characterization of sodium polystyrene sulfonate grafted polysulfone forward osmosis membrane[J]. New Chemical Materials, 2018, 46(7): 114 -117 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn