Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (11): 44-48    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
燃料电池无机-有机复合质子交换膜的研究进展
侯敬贺, 刘闪闪, 肖振雨, 蔡聿星, 丁会利*
河北工业大学化工学院,天津300130
Research progress of inorganic-organic composite proton exchange membrane for fuel cells
Hou Jinghe, Liu Shanshan, Xiao Zhenyu, Cai Yuxing, Ding Huili
College of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130
下载:  PDF (1186KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 燃料电池(Fuel Cell)是21世纪最有前途和发展潜力的清洁能源技术之一,质子交换膜(PEM)作为燃料电池的核心部件,对燃料电池的性能起到重要作用。鉴于全氟磺酸质子交换膜在高温低湿工作环境下所存在的缺点,制备低成本、高性能的无机-有机复合质子交换膜是一种有效的解决办法。以制备无机-有机复合质子交换膜的主要无机填料为分类依据,介绍了近年来国内外无机-有机复合质子交换膜的研究现状,综述了各类无机填料与复合质子交换膜的性能之间的关系,展望了无机-有机复合质子交换膜的未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯敬贺
刘闪闪
肖振雨
蔡聿星
丁会利
关键词:  燃料电池  聚合物  复合质子交换膜  纳米粒子  质子传导率    
Abstract: The fuel cell is considered one of the most promising and potential clean energy technologies in the twenty-first century,The proton exchange membrane(PEM),which is the core component of fuel cells,has a significant impact on the performance of fuel cells.In view of the shortcomings of perfluorosulfonic acid proton exchange membrane in high temperature and low humidity working environment,it is an effective solution to prepare low cost and high performance inorganic-organic composite proton exchange membrane.The main inorganic filler for the preparation of inorganic-organic composite proton exchange membrane was used as the classification basis.The research status of inorganic-organic composite proton exchange membranes at home and abroad in recent years was introduced.The relation between performance of various inorganic fillers and composite proton exchange membranes was reviewed.And the future research direction was also discussed.
Key words:  fuel cell    polymer    composite proton exchange membrane    nanoparticle    proton conductivity
收稿日期:  2017-06-27                出版日期:  2018-11-20      发布日期:  2018-12-04      期的出版日期:  2018-11-20
基金资助: 河北省科技计划自筹经费项目(16211240);河北省高等学校科学技术研究项目(ZD2018044)
通讯作者:  丁会利(1964-),男,博士,教授,主要研究方向为高分子材料改性。   
作者简介:  侯敬贺(1994-),男,硕士,主要研究方向为高温质子交换膜合成与改性。
引用本文:    
侯敬贺, 刘闪闪, 肖振雨, 蔡聿星, 丁会利. 燃料电池无机-有机复合质子交换膜的研究进展[J]. 化工新型材料, 2018, 46(11): 44-48.
Hou Jinghe, Liu Shanshan, Xiao Zhenyu, Cai Yuxing, Ding Huili. Research progress of inorganic-organic composite proton exchange membrane for fuel cells. New Chemical Materials, 2018, 46(11): 44-48.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I11/44
[1] Song C.Fuel processing for low-temperature and high-temperature fuel cells:challenges,and opportunities for sustainable development in the 21st century[J].Catalysis Today,2002,77(1):17-49.
[2] Devrim Y,Erkan S,Baç N,et al.Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2009,34(8):3467-3475.
[3] Neburchilov V,Martin J,Wang H,et al.A review of polymer electrolyte membranes for direct methanol fuel cells[J].Journal of Power Sources,2007,169(2):221-238.
[4] He Y,Tong C,Geng L,et al.Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide:size effect of graphene oxide[J].Journal of Membrane Science,2014,458(10):36-46.
[5] Fu T,Cui Z,Zhong S,et al.Sulfonated poly(ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells[J].Journal of Power Sources,2008,185(1):32-39.
[6] Thomassin J,Kollar J,Caldarella G,et al.Beneficial effect of carbon nanotubes on the performances of nafion membranes in fuel cell applications[J].Journal of Membrane Science,2007,303(1/2):252-257.
[7] Liu Y,Su Y,Chang C,et al.Preparation and applications of nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells[J].Journal of Materials Chemistry,2010,20(21):4409-4416.
[8] Ko T,Kim K,Kim S,et al.Organic/inorganic composite membranes comprising of sulfonated poly(arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells[J].Polymer,2015,71(5):70-81.
[9] He G,Nie L,Han X,et al.Constructing facile proton-conduction pathway within sulfonated poly(ether ether ketone) membrane by incorporating poly(phosphonic acid)/silica nanotubes[J].Journal of Power Sources,2014,259(259):203-212.
[10] Li M,Scott K.A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications[J].Electrochimica Acta,2010,55(6):2123-2128.
[11] Heo Y,Im H,Kim J.The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells[J].Journal of Membrane Science,2013,425/426(1):11-22.
[12] Laberty-Robert C,Vallé K,Pereira F,et al.Design and properties of functional hybrid organic-inorganic membranes for fuel cells[J].Chemical Society Reviews,2011,40(2):961-1005.
[13] Adjemian K,Srinivasan S,Benziger J,et al.Investigation of PEMFC operation above 100℃ employing perfluorosulfonic acid silicon oxide composite membranes[J].Journal of Power Sources,2002,109(2):356-364.
[14] Bauer F,Willert-Porada M.Microstructural characterization of Zr-phosphate-nafion® membranes for direct methanol fuel cell (DMFC) applications[J].Journal of Membrane Science,2004,233(1/2):141-149.
[15] Lin Y,Yen C,Hung C,et al.A novel composite membranes based on sulfonated montmorillonite modified nafion® for DMFCs[J].Journal of Power Sources,2007,168(1):162-166.
[16] Wu X,Wu N,Shi C,et al.Proton conductive montmorillonite-nafion composite membranes for direct ethanol fuel cells[J].Applied Surface Science,2016,388(12):239-244.
[17] Beydaghi H,Javanbakht M,Kowsari E.Preparation and physic-chemical performance study of proton exchange membranes based on phenyl sulfonated graphene oxide nanosheets decorated with iron titanate nanoparticles[J].Polymer,2016,87(1):26-37.
[18] Yin Y,Wang H,Cao L,et al.Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells[J].Electrochimica Acta,2016,203(203):178-188.
[19] Liu Y,Zhang J,Zhang X,et al.Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane[J].Acs Applied Materials & Interfaces,2016,8(31):20352-20363.
[20] Wu X,Hao L,Zhang J,et al.Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J].Journal of Membrane Science,2016,515(8):175-188.
[21] Taghizadeh M,Vatanparast M.Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of nafion membrane in proton exchange membrane (PEM) fuel cells[J].Journal of Colloid & Interface Science,2016,483(1):1-10.
[22] Wu H,Shen X,Xu T,et al.Sulfonated poly(ether ether ketone)/amino-acid functionalized titania hybrid proton conductive membranes[J].Journal of Power Sources,2012,213(9):83-92.
[23] Wu H,Hou W,Wang J,et al.Preparation and properties of hybrid direct methanol fuel cell membranes by embedding or ganophosphorylated titania submicrospheres into a chitosan polymer matrix[J].Journal of Power Sources,2010,195(13):4104-4113.
[24] Boutsika L,Enotiadis A,Nicotera I,et al.Nafion nanocomposite membranes with enhanced properties at high temperature and low humidity environments[J].International Journal of Hydrogen Energy,2016,41(47):22406-22414.
[25] Zhao Y,Jiang Z,Lin D,et al.Enhanced proton conductivity of the proton exchange membranes by the phosphorylated silica submicrospheres[J].Journal of Power Sources,2013,224(15):28-36.
[26] Zhao Y,Yang H,Wu H,et al.Enhanced proton conductivity of hybrid membranes by incorporating phosphorylated hollow mesoporous silica submicrospheres[J].Journal of Membrane Science,2014,469(469):418-427.
[27] He G,Chang C,Xu M,et al.Tunable nanochannels along graphene oxide/polymer core-shell nanosheets to enhance proton conductivity[J].Advanced Functional Materials,2016,25(48):7502-7511.
[28] Xing B,Savadogo O.The effect of acid doping on the conductivity of polybenzimidazole (PBI)[J].Journal of New Materials for Electrochemical Systems,1999,2(2):95-101.
[29] Che Q,Chen N,Yu J,et al.Sulfonated poly(ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes[J].Solid State Ionics,2016,289(6):199-206.
[30] Yue Z,Cai Y,Xu S.Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications[J].Journal of Membrane Science,2016,501(1):220-227.
[31] Yang J,Cleemann L,Steenberg T,et al.High molecular weight polybenzimidazole membranes for high temperature PEMFC[J].Fuel Cells,2014,14(1):7-15.
[32] Li Q,He R,Jensen J O,et al.PBI-Based polymer membranes for high temperature fuel cells-preparation,characterization and fuel cell Demonstration[J].Fuel Cells,2004,4(3):147-159.
[33] Malers J L,Sweikart M A,Horan J L,et al.Studies of heteropoly acid/polyvinylidenedifluoride-hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane[J].Journal of Power Sources,2007,172(1):83-88.
[34] Zhao C,Lin H,Cui Z,et al.Highly conductive,methanol resistant fuel cell membranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid[J].Journal of Power Sources,2009,194(1):168-174.
[35] Yu S K,Feng W,Hickner M,et al.Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications[J].Journal of Membrane Science,2003,212(1/2):263-282.
[36] Zhang Q,Liu H,Li X,et al.Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane[J].Polymer Engineering & Science,2016,56(6):622-628.
[37] Qian W,Shang Y,Fang M,et al.Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications[J].International Journal of Hydrogen Energy,2012,37(17):12919-12924.
[38] Wei Z H,Du C H,Yi X Y,et al.Hybrid proton exchange membranes based on sulfonated poly(phthalazinone ether ketone) and zirconium hydrogen phosphate[J].Polymers for Advanced Technologies,2010,18(5):373-378.
[1] 杨森林, 王洪涛, 盛良全, 苗慧. Sn0.85Ga0.15P2O7/聚苯醚复合电解质的中温电性能探索[J]. 化工新型材料, 2018, 46(9): 195-197.
[2] 门秀婷, 王丽, 王学军, 刘美君, 范慧鹏. 新型无定形全氟二氧杂环戊烷聚合物的研究进展[J]. 化工新型材料, 2018, 46(9): 8-12.
[3] 贾济如, 王潮霞, 殷允杰. 静电纺丝法制备吲哚美辛纳米粒子/聚乙烯醇复合纤维膜[J]. 化工新型材料, 2018, 46(9): 88-90.
[4] 张有为, 马慧玲, 刘平桂, 赫丽华, 罗文, 单明正. 石墨烯-镍纳米复合材料的辐射制备及其电磁行为研究[J]. 化工新型材料, 2018, 46(9): 101-104.
[5] 董淑玲, 翁婷, 王秀玲, 王红霞, 刘勇健. 磁性荧光双功能纳米材料Fe3O4/CS@CQDs的制备与表征[J]. 化工新型材料, 2018, 46(9): 121-124.
[6] 毕永豹, 杨兆哲, 许民. 聚乳酸/麦秸粉复合材料的制备及性能研究[J]. 化工新型材料, 2018, 46(8): 269-271.
[7] 熊乐艳, 张楠, 郭赞如, 马伟, 郑龙珍. 掺N纳米TiO2光催化材料的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 97-101.
[8] 王循, 丁玉梅, 李好义, 谭晶, 杨卫民, 阎华. 聚合物电纺纳米纤维高效油污染处理应用研究进展[J]. 化工新型材料, 2018, 46(7): 48-51.
[9] 游胜勇, 戴润英, 董晓娜, 李玲, 谌开红, 陈衍华. 环氧松香封端有机硅聚合物的合成及性能研究[J]. 化工新型材料, 2018, 46(7): 67-69.
[10] 刘云梅. 氮硫共掺杂碳纳米管的制备及其催化性能研究[J]. 化工新型材料, 2018, 46(7): 127-130.
[11] 刘勇智, 陈国力, 王雅珍, 殷广明. 改性纳米粒子及高分子吸附材料的研究进展[J]. 化工新型材料, 2018, 46(7): 14-17.
[12] 师瑞娟, 刘俊龙, 崔玉民, 王洪涛. 燃料电池用镓酸镧基电解质的研究进展[J]. 化工新型材料, 2018, 46(6): 243-245.
[13] 任超时, 刘明珠, 张庆华, 詹晓力. 交联网状结构聚硅氧烷类固体电解质的制备及电化学性能研究[J]. 化工新型材料, 2018, 46(5): 208-212.
[14] 朱冠南, 李宁, 程小雨, 赵靓, 王海涛, 税粒珂, 李坚, 汪称意, 任强. 聚甲基丙烯酸N,N-二甲胺基乙酯-b-聚甲基丙烯酸十二氟庚酯嵌段共聚物的合成及其在疏水涂层的应用[J]. 化工新型材料, 2018, 46(5): 238-241.
[15] 崔野, 崔海清, 刘福瑞, 雷良才, 李海英. 可逆加成-断裂链转移聚合-细乳液聚合法合成聚异戊二烯-b-聚苯乙烯-b-聚甲基丙烯酸甲酯三嵌段共聚物[J]. 化工新型材料, 2018, 46(5): 166-169.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn