Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (10): 40-43    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
碳纤维表面改性与结构重建技术的研究进展
任明伟1,2,刘莲英3,范广宏1,陈蕴博1,高克玮2,周永松4
1.机械科学研究总院先进制造技术研究中心,北京100083;
2.北京科技大学材料科学与工程学院,北京100083;
3.北京化工大学材料科学与工程学院,北京100029;
4.机械科学研究总院江苏分院,常州213164
Recent research of surface modification and reconstruction of carbon fiber
Ren Mingwei1,2,Liu Lianying3,Fan Guanghong1,Chen Yunbo1,Gao Kewei2,Zhou Yongsong4
1.Advanced Manufacture Technology Center,China Academy of Machinery Science & Technology,Beijing 100083;
2.Institute of Materials Science and Engineering,Beijing University of Science and Technology,Beijing 100083;
3.Institute of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029;
4.Jiangsu Institute,China Academy of Machinery Science & Technology,Changzhou 213164
下载:  PDF (1153KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 未处理的碳纤维表面光滑,具有较强的化学惰性和非极性,与树脂基体间的界面粘结性较差,碳纤维表面的微观形貌结构及化学组成决定了复合材料的性能。对碳纤维表面进行改性,改变碳纤维表面活性及形貌,提高与树脂材料的浸润性,提高界面结合作用,方可将载荷有效地传递给碳纤维,充分发挥碳纤维高强度、高模量等优异性能。介绍了近年国内外碳纤维表面化学组成(引入官能团、接枝分子链等)、微观形貌结构重建改性的研究状况,特别是碳纤维表面构建有机、无机、有机-无机复合微纳米颗粒改性研究的进展,并分析了碳纤维表面改性与结构重建技术研究和应用中存在的一些问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任明伟
刘莲英
范广宏
陈蕴博
高克玮
周永松
关键词:  碳纤维  表面改性  微纳米颗粒  表面结构重建    
Abstract: As the smooth,high chemical inertness and non-polar character of untreated carbon fiber,the interface bonding between resin and carbon fiber was poor,affected mechanical performance of carbon fiber-reinforced composite material.In order to give full play of the high strength,high modulus properties of carbon fiber,surface activity and morphology should be modified for improving the interface bonding and wettability.Carbon fiber surface modification both at home and abroad were discussed,including the research status of surface composition (the introduction of functional groups,graft chain,etc.) and morphology modification.The research progress of carbon fiber surface modified construction of organic,inorganic,organic and inorganic composite nanoparticles was especially introduced,and some problems existing in the carbon fiber surface modification and application were analyzed.
Key words:  carbon fiber    surface modification    micro/nano particle    surface reconstruction
                    发布日期:  2018-11-06      期的出版日期:  2018-11-06
基金资助: 国家863计划(2015AA033802);国家重点研发计划(2016YFD0700603);江苏省重点研发计划(BE2015007)
作者简介:  任明伟(1982-),男,硕士,高级工程师,主要从事纤维增强树脂基复合材料先进成形技术研究。
引用本文:    
任明伟,刘莲英,范广宏,陈蕴博,高克玮,周永松. 碳纤维表面改性与结构重建技术的研究进展[J]. 化工新型材料, 2018, 46(10): 40-43.
Ren Mingwei,Liu Lianying,Fan Guanghong,Chen Yunbo,Gao Kewei,Zhou Yongsong. Recent research of surface modification and reconstruction of carbon fiber. New Chemical Materials, 2018, 46(10): 40-43.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I10/40
[1] Liu Y,Kumar S.Recent progress in fabrication structure,and properties of carbon fibers[J].Polym Rev,2012,52(3/4):234-258.
[2] Karsli N G,Aytac A.Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites[J].Composites Part B,2013,51(51):270-275.
[3] Li J.The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber[J].Appl Surf Sci,2009,255(20):8682-8684.
[4] Brandl W,Marginean G,Chiril V,et al.Production and characterization of vapour grown carbon fiber/polypropylene composites[J].Carbon,2004,42(1):5-9.
[5] Wang L L,Li P,Li L C,et al.Effect of surface properties of T800 carbon fibers on epoxy/fiber interface adhesion[J].Polym Polym Compos,2013,21(9):607-612.
[6] Liu L,Jia C Y,He J M.Interfacial characterization,control and modification of carbon fiber reinforced polymer composites[J].Compos Sci Technol,2015,121(1):56-72.
[7] Liu Z,Tang C,Chen P,et al.Modification of carbon fiber by air plasma and its adhesion with BMI resin[J].RSC Adv,2014,4(51):26881-26887.
[8] Dai Z S,Zhang B Y,Shi F H,et al.Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J].Appl Surf Sci,2011,257(15):8457-8461.
[9] Vautard F,Ozcan S,Paulauskas F,et al.Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment[J].Appl Surf Sci,2012,261(8):473-480.
[10] Vautard F,Grappe H,Ozcan S.Stability of carbon fiber surface functionality at elevated temperatures and its influence on interfacial adhesion[J].Appl Surf Sci,2013,268(3):61-72.
[11] Dai Z S,Shi F H,Zhang B Y,et al.Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J].Appl Surf Sci,2011,257(15):6980-6985.
[12] Fang C Q,Wu J X,Wang J L,et al.Modification of carbon fiber surfaces via grafting with Meldrum's acid[J].Appl Surf Sci,2015(1),356:9-17.
[13] Zhang R L,Gao B,Zhang J,et al.Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization:a novel methodology for fiber/matrix composites[J].Appl Surf Sci,2015,359:812-818.
[14] Zhang Y Y,Zhang Y Z,Liu Y,et al.A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites[J].Appl Surf Sci,2016,382:144-154.
[15] Hua Y N,Wang C G,Zhang S,et al.Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite[J].Appl Surf Sci,2012,259(41):288-293.
[16] Zhang W,Duchet J,Gérard JF.Self-healable interfaces based on thermo-reversible Diels-Alder reactions in carbon fiber reinforced composites[J].J Colloid Interface Sci,2014,430:61-68.
[17] Zhang R L,Huang Y D,Liu L,et al.Effect of emulsifier content of sizing agent on the surface of carbon fibres and interface of its composites[J].Appl Surf Sci,2011,257(8):3519-3523.
[18] Lee H,Ohsawa I,Takahashi J.Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties[J].Appl Surf Sci,2015,328:241-246.
[19] Song W,Gu A J,Liang G Z,et al.Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J].Appl Surf Sci,2011,257(9):4069-4074.
[20] Vautard F,Ozcan S,Meyer H.Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites[J].Composites:Part A,2012,43(7):1120-1133.
[21] Wu S,Liu Y Q,Ge Y C,et al.Surface structures of PAN-based carbon fibers and their influences on the interface formation and mechanical properties of carbon-carbon composites[J].Composites:Part A,2016,90:480-488.
[22] Meysam B B,Ahmad M S,Aminoddin H,et al.Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology[J].Compos Sci Technol,2016,128:215-221.
[23] Montes-Mora′n M A,Hattum F W J,Nunes J P,et al.A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites[J].Carbon,2005,43(8):1778-1814.
[24] Yamamoto T,Uematsu K,Irisawa T,et al.Controlling of the interfacial shear strength between thermoplastic resin and carbon fiber by adsorbing polymer particles on carbon fiber using electrophoresis[J].Composites:Part A,2016,88:75-78.
[25] Wang B,Duan Y G,Zhang J J.A controllable interface performance through varying ZnO nanowires dimensions on the carbon fibers[J].Appl Surf Sci,2016,389:96-102.
[26] Li F,Liu Y,Qu C B,et al.Enhanced mechanical properties of short carbon fiber reinforced polyether sulfone composites by graphene oxide coating[J].Polym,2015,59:155-165.
[27] Ning H M,Li J H,Hu N,et al.Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf[J].Carbon,2015,91:224-233.
[28] Seung J S,Song H H,Kwang U J,et al.Effect of crystal morphology transition of polypropylene on interfacial properties of carbon fiber-reinforced composites through AlOOH surface treatment[J].Composites:Part A,2015,78:362-370.
[29] Wu Z J,Meng L H,Liu L.Interfacial microstructure and properties of carbon fiber-reinforced unsaturated polyester composites modified with carbon nanotubes[J].J Adhes Sci Technol,2014,28(5):444-453.
[30] Zhang Q B,Wu G S,Xie F.Mechanical properties of carbon fiber composites modified with nano-SiO2 in the interphase[J].J Adhes Sci Technol,2014,28(21):2154-2166.
[31] Yang X B,Jiang X,Huang Y D,et al.Building nanoporous metal-organic frameworks “armor” on fibers for high-performance composite materials[J].ACS Appl Mater Interfaces,2017,9(6):5590-5599.
[1] 李常清, 贾龙飞, 徐盼盼, 张校, 徐樑华. 热处理时间对PAN碳纤维性能影响的研究[J]. 化工新型材料, 2018, 46(9): 177-179.
[2] 赵然, 高欣宝, 鲁彦玲, 杜风贞, 张力, 刘大志. 反应温度对铝镁合金粉表面硅烷膜形成及性能影响的研究[J]. 化工新型材料, 2018, 46(9): 148-152.
[3] 钟文丽, SamuelBERNARD, 王思清, 王应德, PhilippeMIELE. 先驱体浸渍裂解工艺制备碳纤维增强氮化硼基复合材料[J]. 化工新型材料, 2018, 46(8): 139-141.
[4] 赵思伟, 钱家盛, 苗继斌, 夏茹, 陈鹏, 杨斌. 氢氧化物阻燃剂的改性及其对乙丙橡胶/苯基硅橡胶共混胶性能影响研究[J]. 化工新型材料, 2018, 46(8): 123-126.
[5] 王晓晓, 彭浩凯, 张晓慧, 罗贵明, 李婷婷, 王煦怡, 吴利伟, 姜茜, 林佳弘. 表面处理对芳纶纤维物理和机械性能的影响[J]. 化工新型材料, 2018, 46(8): 67-70.
[6] 董广雨, 丁玉梅, 杨卫民, 谢鹏程. 连续碳纤维复合材料热压成型工艺条件优化研究[J]. 化工新型材料, 2018, 46(8): 71-74.
[7] 刘鹏飞, 刘志胜. 碳纤维在道路工程中自诊断及电热性能研究进展[J]. 化工新型材料, 2018, 46(7): 232-236.
[8] 任娇, 金永中, 陈建, 王璐, 代祖洋. 前驱体法制备螺旋纳米碳纤维及性能研究[J]. 化工新型材料, 2018, 46(7): 250-253.
[9] 陈帅金, 孙杰, 李国明. 羟基化多壁碳纳米管对氰酸酯树脂的复合改性研究[J]. 化工新型材料, 2018, 46(6): 95-99.
[10] 姚婷婷, 吴刚平, 刘玉婷, 宋红艳. 碳纤维复合材料界面性能评价方法研究进展[J]. 化工新型材料, 2018, 46(6): 12-14.
[11] 戴姗姗, 寇子敏, 刘艳, 彭皓. SiO2/聚丙烯酰胺核壳复合材料的制备研究[J]. 化工新型材料, 2018, 46(6): 135-139.
[12] 张坤, 肖学良, 周红涛, 钱坤. 碳纤维/铜纤维增强酚醛树脂基摩擦材料的氧化机理探究[J]. 化工新型材料, 2018, 46(6): 148-151.
[13] 张兵, 吕春祥. 聚丙烯腈基中空多孔碳纤维的研究进展[J]. 化工新型材料, 2018, 46(6): 222-225.
[14] 李若雪, 张行, 卢丽丽, 许士明, 魏云鹤, 于萍, 张长桥. 纳米级油溶性降黏剂聚甲基丙烯酸十八烷基酯-丙烯酰胺/介孔纳米SiO2的制备及应用[J]. 化工新型材料, 2018, 46(5): 154-157.
[15] 王增加, 刘建军, 韩笑, 王希杰, 李辅安, 周玉玺. 一种大型碳纤维复合材料桁架结构的设计与研制[J]. 化工新型材料, 2018, 46(5): 71-74.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn